Introduction	Related Literature	The Distribution F	A Correlation Inequality	References

On the number of maximum random vectors

A phase transition, correlation inequality and a CLT

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

31 May, 2022

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References

- **2** Related Literature
- **3** The Distribution *F*
- **4** A Correlation Inequality
- **5** References

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution F A	A Correlation Inequality	References
•0				

- 2 Related Literature
- **3** The Distribution *F*
- **4** A Correlation Inequality
- **6** References

- 《 ㅁ 》 《 卽 》 《 恴 》 《 恴 》 의 이 이

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution <i>F</i>	A Correlation Inequality	References
0	00000	00000000000		000
Problem for	mulation			

Consider *n* random vectors in X₁,..., X_n ∈ ℝ^k with i.i.d. coordinates, X_{ij} ^{i.i.d.} F for i = 1,..., n; j = 1,..., k.

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution <i>F</i>	A Correlation Inequality	References
○●	00000	00000000000		000
Problem fo	ormulation			

- Consider *n* random vectors in X₁,..., X_n ∈ ℝ^k with i.i.d. coordinates, X_{ij} ^{i.i.d.} F for i = 1,..., n; j = 1,..., k.
- We say that a vector X_i dominates a vector X_j, if it is not smaller than X_j in all coordinates, i.e. X_i ≽ X_j if X_{il} ≥ X_{jl}, ∀l = 1,..,k.

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
00				
Problem f	ormulation			
	ormulation			

- Consider *n* random vectors in X₁,..., X_n ∈ ℝ^k with i.i.d. coordinates, X_{ij} ^{i.i.d.} F for i = 1,..., n; j = 1,..., k.
- We say that a vector X_i dominates a vector X_j, if it is not smaller than X_j in all coordinates, i.e. X_i ≽ X_j if X_{il} ≥ X_{jl}, ∀l = 1,..,k.
- We say that a vector X_i is a maximum, if no other vector X_j dominates it. Let M_{k,n} ⊂ [n] ≡ {1,..,n} be the index set of the maximum vectors, and let M_{k,n} = |M_{k,n}| be the number of maximum vectors.

Or Zuk

Introduction	Related Literature	The Distribution <i>F</i>	A Correlation Inequality	References
00	00000	00000000000		000
Problem f	ormulation			

- Consider *n* random vectors in X₁,..., X_n ∈ ℝ^k with i.i.d. coordinates, X_{ij} ^{i.i.d.} F for i = 1,..., n; j = 1,..., k.
- We say that a vector X_i dominates a vector X_j, if it is not smaller than X_j in all coordinates, i.e. X_i ≽ X_j if X_{il} ≥ X_{jl}, ∀l = 1,.., k.
- We say that a vector X_i is a maximum, if no other vector X_j dominates it. Let M_{k,n} ⊂ [n] ≡ {1,..,n} be the index set of the maximum vectors, and let M_{k,n} = |M_{k,n}| be the number of maximum vectors.
- Qu: What can we say about the distribution of M_{k,n}? (moments, bounds, asymptotic results ..)

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
	00000			

2 Related Literature

The Expectation The Distribution of $\mathcal{M}_{k,n}$

3 The Distribution *F*

4 A Correlation Inequality

6 References

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
	0000			

2 Related Literature The Expectation

The Distribution of $\mathcal{M}_{k,n}$

3 The Distribution *F*

4 A Correlation Inequality

Department of Statistics and Data Science The Hebrew University of Jerusalem

Or Zuk

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
	0000			

- The problem was studied extensively for *continuous F*.
 W.I.o.g. we can assume that F = U[0, 1].
- Define the normalized expectation: $p_{k,n} \equiv \frac{E[M_{k,n}]}{n} = P(1 \in \mathcal{M}_{k,n}).$
- A combinatorial result for the expectation: (see e.g. [BDHT05]):

$$p_{k,n} = \sum_{u=1}^{n} {n-1 \choose u-1} \frac{(-1)^{u-1}}{u^k}$$

• A recurrence relation:

$$p_{1,n} = \frac{1}{n}$$
; $p_{k,n} = \frac{1}{n} \sum_{u=1}^{n} p_{k-1,u}, \forall k > 1.$

Hence, $\forall k > 1$: $p_{k,n} = \frac{1}{n} \sum_{u \in \mathcal{U}_{k,n}} \frac{1}{u_1 u_2 \dots u_{k-1}}$, where

$$\mathcal{U}_{k,n}\equiv\left\{u=(u_1,\ldots,u_{k-1})\in\mathbb{Z}^{k-1}\ ;\ 1\leq u_1\leq u_2\leq \ldots\leq u_{k-1}\leq n
ight\}$$

• Asymptotics for fixed k, as $n \to \infty$ (see, e.g., [BNS66]):

$$p_{k,n} \sim rac{\log^{k-1}(n)}{n(k-1)!} \ \ ext{as} \ \ n o \infty \,.$$

(Higher-order terms are also available, yielding an asymptotic expansion)

Or Zuk

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
	00000			

3 The Distribution *F*

4 A Correlation Inequality

5 References

- * ロ > * @ > * 注 > * 注 > _ 注 = ^) へ()

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution F A Correlation Inequality		References
	00000			

- $V_{k,n} \equiv Var(M_{k,n})$
- An approximate combinatorial formula for the variance is given in [BCHL98].
- An asymptotic result for the variance is also available, including asymptotic independence of the events {1 ∈ M_{k,n}}, {2 ∈ M_{k,n}}
- Asymptotic Normality of M_{k,n} was established in [BDHT05].

◆ 同 ▶ → 三 ▶

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
		• 0000 000000		

2 Related Literature

3 The Distribution *F*

A Phase Transition when $k, n \rightarrow \infty$

4 A Correlation Inequality

5 References

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆</p>

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution <i>F</i>	A Correlation Inequality	References
00	00000	○●○○○○○○○○		000
Weak vs.	Strong Maxima			

- We say that a vector X_i strongly dominates a vector X_j (denoted X_i ≻ X_j), if X_i dominates X_j (X_i ≿ X_j), and in addition ∃I ∈ [k] such that X_{il} > X_{jl}.
- We say that a vector X_i is a *weak* maximum, if no other vector X_j strongly dominates it. The previous definition refers to *weak* dominance and a *strong* maximum.
- Let $S_{k,n} \subset \{1,..,n\}$ be the index set of the *strong* maximum vectors, and let $S_{k,n} = |S_{k,n}|$ be the *number* of maximum vectors.
- We denote $q_{k,n} = \frac{E[S_{k,n}]}{n}$. For the continuous case, $q_{k,n} = p_{k,n}$. For general $F: q_{k,n}^{(F)} \leq p_{k,n}^{(F)}$ and the inequality may be strict.

イロト イポト イヨト イヨ

Or Zuk

Introduction 00	Related Literature 00000	The Distribution <i>F</i>	A Correlation Inequality	References 000
Example [.]	Binary F			

General *F* functions are of interest for two reasons:

- **1** Ties may be prevalent for discrete or mixed distributions.
- 2 Even if the true underlying distributions are continuous, we may have a finite tolerance ε > 0, and will not distinguish between vectors within this tolerance.

QU: Why the binary case?

Proposition: Let $p_{k,n}^{(F)}$ be defined as above for a general F, $p_{k,n}$ for the continuous case, and $p_{k,n}^{(p)}$ for the *Bernoulli*(p) case. Then,

1 $p_{k,n}^{(F)} \le p_{k,n}$. 2 $p_{k,n}^{(p)} \le p_{k,n}^{(F)}$ for every $p \in \{1 - F(x); x \in \mathbb{R}\}$.

・ 同 ト ・ ヨ ト ・ ヨ

Introduction 00	Related Literature 00000	The Distribution <i>F</i>	A Correlation Inequality	References 000
Continuous	sys Bernoulli(u) Comparison		

We derived exact combinatorial results and asymptotic results for fixed k as $n \to \infty$ for $p_{k,n}$ allowing a comparison between the continuous and binary cases:

p _{k,n}	Exact	$n \to \infty$
Continuous	$\sum_{u=1}^{n} \binom{n-1}{u-1} \frac{(-1)^{u-1}}{u^k}$	$\sim \frac{\log^{k-1}(n)}{n(k-1)!}$
Bernoulli(p) (strong)	$\sum_{i=0}^{k} {k \choose i} p^{i} (1-p)^{k-i} \left(1-p^{i}\right)^{n-1}$	$\sim p^k (1-p^k)^{n-1}$
Bernoulli(p) (weak)	$\sum_{i=0}^{k} {\binom{k}{i}} p^{i} (1-p)^{k-i} \left(1-p^{i}+p^{i} (1-p)^{k-i}\right)^{n-1}$	$\sim p^k$

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution <i>F</i>	A Correlation Inequality	References
00	00000	00000000000		000

Figure 1: Value of $p_{k,n} = q_{k,n}$ (solid lines), $q_{k,n}^{(0.5)}$ (dashed lines) and $p_{k,n}^{(0.5)}$ (dotted lines) as a function of n, for k = 1, ..., 5.

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
		0000000000		

2 Related Literature

3 The Distribution *F*

A Phase Transition when $k, n \rightarrow \infty$

4 A Correlation Inequality

5 Reference

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

On the number of maximum random vectors

æ

Introduction 00	Related Literature 00000	The Distribution <i>F</i>	A Correlation Inequality	References 000
The γ fur	nctional of F			

• For a distribution *F*, define $\gamma \equiv \gamma_F$ as follows:

$$\gamma \equiv \gamma_F \equiv -E_F \log \left[S(X) \right] \tag{1}$$

イロト イボト イヨト イヨト

where $S(x) = P(X \ge x) = 1 - \lim_{\epsilon \searrow 0} F(x - \epsilon)$ is a (left-continuous) survival function.

• **Properties:** $\gamma \in (0, 1]$ for finite real-valued X. $\gamma = 1$ for any continuous F. $\gamma = -p \log(p)$ for the *Bernoulli(p)* distribution, maximized at $p = e^{-1}$ with the value $\gamma = e^{-1} \approx 0.368$.

Introduction	Related Literature	The Distribution <i>F</i>	A Correlation Inequality	References
00	00000		00000	000
Phase Trans	ition Theorem			

- **Theorem** 1: Let k_1, k_2, \ldots be a sequence of positive integers
 - (a) If

$$\liminf_{n\to\infty}\frac{k_n}{\log(n)}>\gamma^{-1}\,,$$

then

$$\mathbf{1}_{\mathcal{M}_{k_n,n}}(1) \xrightarrow{n \to \infty} 1$$
 , *P*-a.s.

(b) If

$$\limsup_{n\to\infty}\frac{k_n}{\log(n)}<\gamma^{-1}\,,$$

then

$$\mathbf{1}_{\mathcal{M}_{k_n,n}}(1) \xrightarrow{n \to \infty} 0$$
 , *P*-a.s.

Remark: A related result was obtained in [Hwa04] using analytic technique.

Our proof uses probabilistic arguments (in particular an extreme-value Theorem from [Fer93]).

3

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
		00000000000		
A	and for fined to a	N		

Numeric results for the continuous case are consistent with the phase transition.

Figure 2: Value of $\log(p_{k_n,n})$ for the continuous case computed using the exact combinatorial formula (line-connected circles) for $k_n = \lfloor (c \log(n) \rfloor$ for n from 1 to 10^7 and k_n up to $\lfloor (c \log(10^7) \rfloor$ for each c.

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
		000000000000		

An exact combinatorial formula for the variance

- Let $e_{k,n} \equiv = P(1, 2 \in \mathcal{M}_{k,n})$
- For the continuous case:

$$V_{k,n} = np_{k,n}(1-p_{k,n}) + n(n-1)[e_{k,n} - p_{k,n}^{2}],$$

with

$$e_{k,n} = \sum_{\substack{a,b,c,d \in \mathbb{Z}_+:\\a+b+c+d=n-2}} (-1)^{a+b} {n-2 \choose a \ b \ c \ d} \frac{(a+b+2c+2)^k - (b+c+1)^k - (a+c+1)^k}{(a+c+1)^k (b+c+1)^k (a+b+c+2)^k}.$$

• For the binary case: replace above $p_{k,n}$ by $p_{k,n}^{(p)}$ and $e_{k,n}$ by $e_{k,n}^{(p)}$, with

$$e_{k,n}^{(p)} = \sum_{\substack{a,d \ge 0; \ b,c \ge 1:\\ a+b+c+d=k}} \binom{k}{a \ b \ c \ d} \left[1 - p^d (p^b + p^c - p^{b+c}) \right]^{n-2}$$

Test your intuition: Are the events {i ∈ M_{k,n}} positively or negatively correlated? (i.e. what is the sign of e_{k,n} - p_{k,n}²?)

Or Zuk

Introduction	Related Literature	The Distribution <i>F</i>	A Correlation Inequality	References
00	00000	○○○○○○○○○●		000
The Corre	lations' Sign			

Answer: It depends! (on *k* and *n*)

Figure 3: Left: $-\text{sgn}(\rho_{k,n}) \cdot \log(|\rho_{k,n}|)$ for k = 1, ..., 10 and n = 2, 3, ..., 100. Positive (negative) values corresponding to positive (negative) correlations. **Right:** The over-dispersion $\frac{Var(Z_{k,n})}{n\rho_{k,n}(1-\rho_{k,n})} - 1 = (n-1)\rho_{k,n}$ for the same values of k and n.

Manuscript: https://arxiv.org/abs/2112.15534 [JZ21] _ _____

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
			00000	

2 Related Literature

3 The Distribution *F*

4 A Correlation Inequality

5 References

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ へ ()

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
00	00000		0●000	000
The XYZ I	nequality			

• **Theorem:** (XYZ-inequality, [She82]) Let $X_i \stackrel{i.i.d.}{\sim} U[0,1]$, $i = 1, ..., n \ge 3$. Let $E_{ij} \equiv \{X_i < X_j\}, \forall i \neq j$. Let $T \subset [n] \times [n]$ be a set of (ordered) pairs (i,j) and define the event $\Gamma \equiv \Gamma_T = \bigcap_{(i,j) \in T} E_{ij}$. Then:

$P(E_{12}|\Gamma) \leq P(E_{12}|\Gamma, E_{13}).$

• While intuitive, many natural generalizations fail and there are known counter-examples. For example, the above inequality may not hold when conditioning further on *E*₄₃, and there are known counter-examples satisfying:

$$P(E_{12}|\Gamma) > P(E_{12}|\Gamma, E_{13} \cap E_{43}).$$

Similarly, if we replace E_{12} by intersection of events like $E_{12} \cap E_{14}$.

イロト イポト イヨト イヨト

Introduction Related	Related Literature	The Distribution F	A Correlation Inequality	References 000

A correlation inequality for random variables in a matrix

 Theorem: Let X_{ij} ~ F be continuous random variables. Let V_{ij} ≡ {X_i ≺ X_j} = ∩^k_{l=1}{X_{il} < X_{jl}}. Then:

$$P\left(\bigcap_{j=3}^{n} \overline{V_{2j}} \middle| \bigcap_{j=3}^{n} \overline{V_{1j}}\right) \le P\left(\bigcap_{j=3}^{n} \overline{V_{2j}} \middle| \bigcap_{j=3}^{n} V_{j1}\right).$$
(2)

• **Remark:** The matrix structure of the X_{ij} in the inequality above is quite specific, and is used in the proof.

An open problem: For $X_i \stackrel{i.i.d.}{\sim} U[0,1]$, for what families $\{F_t, G_s \in [n] \times [n]\}$ can we generalize the inequality to:

$$P(\bigcap_{t=1}^{T}\bigcup_{(i,j)\in F_{t}}E_{ij}|\bigcap_{s=1}^{S}\bigcup_{(i,j)\in G_{s}}E_{ij}) \leq P(\bigcap_{t=1}^{T}\bigcup_{(i,j)\in F_{t}}E_{ij}|\bigcap_{s=1}^{S}\bigcap_{(i,j)\in G_{s}}E_{ij})$$

Or Zuk

(人間) シスヨン スヨン

Introduction	Related Literature	The Distribution <i>F</i>	A Correlation Inequality	References
00	00000	00000000000		000
Asymptot	ic Independence			

The correlation inequality yields the following asymptotic independence result: Theorem: If k>1, then

$$e_{k,n} \sim p_{k,n}^2 \sim \left[\frac{\log^{k-1}(n)}{n(k-1)!} \right]^2$$
 as $n \to \infty$

and hence

Or Zuk

$$\rho_{k,n} \equiv \operatorname{Corr}(Z_1, Z_2) = o\left[\frac{\log^{k-1}(n)}{n}\right] \text{ as } n \to \infty.$$

where $Z_i \equiv Z_i^{k,n}$ is defined as the indicator r.v. of the event $\{i \in \mathcal{M}_{k,n}\}$. This can be used further to prove a CLT for weakly correlated triangular arrays.

メロト メタト メヨト メヨト

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
			00000	

A Central Limit Theorem for Partial Sums

1 For any $k \in \mathbb{N}$,

$$\frac{1}{np_{k,n}}\sum_{i=1}^n Z_i^{k,n} \to 1 \ \text{as} \ n \to \infty \ \text{in} \ L^2(P) \,.$$

2 Let $(m_n)_{n=1}^{\infty}$ be a sequence of positive integers such that $\lim_{n\to\infty} \frac{n}{m_n} = \alpha \in (0,1)$ and assume that k > 1. In addition, for any $n \ge 1$ and $1 \le i \le m_n$ denote $U_{ni} \equiv \frac{Z_{ni} - p_{k,m_n}}{\sqrt{p_{k,m_n}(1 - p_{k,m_n})}}$, where $Z_{ni} \equiv Z_i^{k,m_n}$. Then,

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}U_{ni}-\frac{1}{m_{n}}\sum_{i=1}^{m_{n}}U_{ni}\right)\xrightarrow{d}\mathcal{N}(0,1-\alpha) \text{ as } n\to\infty.$$

 $\Im \ \forall k > 1, \exists (m_n)_{n=1}^{\infty} \text{ such that } n \ll m_n \ll n \log^k n \text{ and:}$

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}U_{ni}\xrightarrow{d}\mathcal{N}(0,1) \text{ as } n\to\infty.$$
(3)

Manuscript: $[JZ_2]$, JZ_2 , JZ_2

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
				•00

2 Related Literature

3 The Distribution *F*

4 A Correlation Inequality

5 References

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction 00	Related Literature 00000	The Distribution <i>F</i> 00000000000	A Correlation Inequality 00000	References 0●0
[BCHL98]	Zhi-Dong Bai, Chern-Ching Chao, Hs On the variance of the number of ma The Annals of Applied Probability, 8(ien-Kuei Hwang, and Wen-Qi Liang. xima in random vectors and its applica 3):886–895, 1998.	tions.	
[BDHT05]	Zhi-Dong Bai, Luc Devroye, Hsien-Ku Maxima in hypercubes. Random Structures & Algorithms, 27	ei Hwang, and Tsung-Hsi Tsai. (3):290–309, 2005.		
[BNS66]	Ole Barndorff-Nielsen and Milton Sob On the distribution of the number of <i>Theory of Probability & Its Application</i>	el. admissible points in a vector random s ons, 11(2):249–269, 1966.	ample.	
[Fer93]	Thomas S Ferguson. On the asymptotic distribution of max Statistical Papers, 34(1):97–111, 1993	x and mex. 3.		
[Hwa04]	Hsien-Kuei Hwang. Phase changes in random recursive st In Probability, Finance and Insurance,	ructures and algorithms. pages 82–97. World Scientific, 2004.		
[JZ21]	Royi Jacobovic and Or Zuk. A phase transition for the probability arXiv preprint arXiv:2112.15534, 2021	of being a maximum among random v	ectors with general iid coordinates.	
[JZ22]	Royi Jacobovic and Or Zuk. A correlation inequality for random popreprint, 2022.	oints in a hypercube and a related limi	t theorem.	
[She82]	Larry A Shepp. The xyz conjecture and the fkg inequ The Annals of Probability, pages 824-	ality. -827, 1982.		

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

Introduction	Related Literature	The Distribution F	A Correlation Inequality	References
00	00000	0000000000		00●

Thank You

Or Zuk

Department of Statistics and Data Science The Hebrew University of Jerusalem

・ロト ・回ト ・目ト

On the number of maximum random vectors

문 🛌 문