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Problem formulation

• Consider n random vectors in X1, ...,Xn ∈ Rk with i.i.d.
coordinates, Xij

i .i .d .∼ F for i = 1, .., n ; j = 1, .., k.

• We say that a vector Xi dominates a vector Xj , if it is not
smaller than Xj in all coordinates, i.e. Xi ⪰ Xj if Xil ≥ Xjl ,
∀l = 1, .., k.

• We say that a vector Xi is a maximum, if no other vector Xj

dominates it. Let Mk,n ⊂ [n] ≡ {1, .., n} be the index set of
the maximum vectors, and let Mk,n = |Mk,n| be the number
of maximum vectors.

• Qu: What can we say about the distribution of Mk,n?
(moments, bounds, asymptotic results ..)
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• The problem was studied extensively for continuous F .
W.l.o.g. we can assume that F = U[0, 1].

• Define the normalized expectation: pk,n ≡ E [Mk,n ]
n = P(1 ∈ Mk,n).

• A combinatorial result for the expectation: (see e.g. [BDHT05]):

pk,n =
n∑

u=1

(n − 1
u − 1

) (−1)u−1

uk .

• A recurrence relation:

p1,n =
1
n

; pk,n =
1
n

n∑
u=1

pk−1,u , ∀k > 1.

Hence, ∀k > 1: pk,n = 1
n
∑

u∈Uk,n
1

u1u2...uk−1
, where

Uk,n ≡
{

u = (u1, . . . , uk−1) ∈ Zk−1 ; 1 ≤ u1 ≤ u2 ≤ . . . ≤ uk−1 ≤ n
}

.

• Asymptotics for fixed k, as n → ∞ (see, e.g., [BNS66]):

pk,n ∼
logk−1(n)
n(k − 1)!

as n → ∞ .

(Higher-order terms are also available, yielding an asymptotic expansion)
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• Vk,n ≡ Var(Mk,n)

• An approximate combinatorial formula for the variance is given in [BCHL98].
• An asymptotic result for the variance is also available, including asymptotic

independence of the events {1 ∈ Mk,n}, {2 ∈ Mk,n}
• Asymptotic Normality of Mk,n was established in [BDHT05].
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Weak vs. Strong Maxima

• We say that a vector Xi strongly dominates a vector Xj (denoted Xi ≻ Xj ), if Xi
dominates Xj (Xi ⪰ Xj ), and in addition ∃l ∈ [k] such that Xil > Xjl .

• We say that a vector Xi is a weak maximum, if no other vector Xj strongly
dominates it. The previous definition refers to weak dominance and a strong
maximum.

• Let Sk,n ⊂ {1, .., n} be the index set of the strong maximum vectors, and let
Sk,n = |Sk,n| be the number of maximum vectors.

• We denote qk,n =
E [Sk,n ]

n . For the continuous case, qk,n = pk,n.
For general F : q(F )

k,n ≤ p(F )
k,n and the inequality may be strict.
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Example: Binary F

General F functions are of interest for two reasons:

1 Ties may be prevalent for discrete or mixed distributions.

2 Even if the true underlying distributions are continuous, we may have a finite
tolerance ϵ > 0, and will not distinguish between vectors within this tolerance.

QU: Why the binary case?
Proposition: Let p(F )

k,n be defined as above for a general F , pk,n for the continuous
case, and p(p)

k,n for the Bernoulli(p) case. Then,

1 p(F )
k,n ≤ pk,n.

2 p(p)
k,n ≤ p(F )

k,n for every p ∈ {1 − F (x); x ∈ R}.

Or Zuk Department of Statistics and Data Science The Hebrew University of Jerusalem
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Continuous vs. Bernoulli(p) Comparison

We derived exact combinatorial results and asymptotic results
for fixed k as n → ∞ for pk,n allowing a comparison between
the continuous and binary cases:

pk,n Exact n → ∞

Continuous
n∑

u=1

(
n−1
u−1

)
(−1)u−1

uk ∼ logk−1(n)
n(k−1)!

Bernoulli(p) (strong)
k∑

i=0

(
k
i

)
pi (1 − p)k−i

(
1 − pi

)n−1
∼ pk (1 − pk )n−1

Bernoulli(p) (weak)
k∑

i=0

(
k
i

)
pi (1 − p)k−i

(
1 − pi + pi (1 − p)k−i

)n−1
∼ pk

Or Zuk Department of Statistics and Data Science The Hebrew University of Jerusalem
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Comparison for fixed k and n → ∞

Figure 1: Value of pk,n = qk,n (solid lines), q(0.5)
k,n (dashed lines)

and p(0.5)
k,n (dotted lines) as a function of n, for k = 1, .., 5.
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The γ functional of F

• For a distribution F , define γ ≡ γF as follows:

γ ≡ γF ≡ −EF log [S(X)] (1)

where S(x) = P(X ≥ x) = 1 − limϵ↘0 F (x − ϵ) is a (left-continuous) survival
function.

• Properties: γ ∈ (0, 1] for finite real-valued X .
γ = 1 for any continuous F .
γ = −p log(p) for the Bernoulli(p) distribution, maximized at p = e−1 with the
value γ = e−1 ≈ 0.368.
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Phase Transition Theorem

• Theorem 1: Let k1, k2, . . . be a sequence of positive integers
(a) If

lim inf
n→∞

kn

log(n)
> γ−1 ,

then
1Mkn,n

(1) n→∞−−−−→ 1 , P-a.s.

(b) If

lim sup
n→∞

kn

log(n)
< γ−1 ,

then
1Mkn,n

(1) n→∞−−−−→ 0 , P-a.s.

Remark: A related result was obtained in [Hwa04] using analytic technique.
Our proof uses probabilistic arguments (in particular an extreme-value Theorem from
[Fer93]).

Or Zuk Department of Statistics and Data Science The Hebrew University of Jerusalem
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Asymptotics for fixed k , n → ∞

Numeric results for the continuous case are consistent with the phase transition.

Figure 2: Value of log(pkn,n) for the continuous case computed using the
exact combinatorial formula (line-connected circles) for kn = ⌊(c log(n)⌋ for n
from 1 to 107 and kn up to ⌊(c log(107)⌋ for each c.
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An exact combinatorial formula for the variance

• Let ek,n ≡= P(1, 2 ∈ Mk,n)

• For the continuous case:

Vk,n = npk,n(1 − pk,n) + n(n − 1)[ek,n − pk,n
2],

with

ek,n =
∑

a,b,c,d∈Z+:
a+b+c+d=n−2

(−1)a+b
( n − 2

a b c d

) (a + b + 2c + 2)k − (b + c + 1)k − (a + c + 1)k

(a + c + 1)k(b + c + 1)k(a + b + c + 2)k .

• For the binary case: replace above pk,n by p(p)
k,n and ek,n by e(p)k,n, with

e(p)k,n =
∑

a,d≥0 ; b,c≥1:
a+b+c+d=k

( k
a b c d

) [
1 − pd (pb + pc − pb+c)

]n−2
.

• Test your intuition: Are the events {i ∈ Mk,n} positively or negatively
correlated? (i.e. what is the sign of ek,n − pk,n

2?)

Or Zuk Department of Statistics and Data Science The Hebrew University of Jerusalem
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The Correlations’ Sign
Answer: It depends! (on k and n)

Figure 3: Left: −sgn(ρk,n) · log(|ρk,n|) for k = 1, .., 10 and
n = 2, 3, .., 100. Positive (negative) values corresponding to positive
(negative) correlations. Right: The over-dispersion

Var(Zk,n)
npk,n(1−pk,n)

− 1 = (n − 1)ρk.n for the same values of k and n.

Manuscript: https://arxiv.org/abs/2112.15534 [JZ21]
Or Zuk Department of Statistics and Data Science The Hebrew University of Jerusalem
On the number of maximum random vectors 20 / 28
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The XYZ Inequality

• Theorem: (XYZ-inequality, [She82]) Let Xi
i.i.d.∼ U[0, 1], i = 1, .., n ≥ 3. Let

Eij ≡ {Xi < Xj}, ∀i ̸= j. Let T ⊂ [n]× [n] be a set of (ordered) pairs (i , j) and
define the event Γ ≡ ΓT =

⋂
(i,j)∈T

Eij . Then:

P(E12|Γ) ≤ P(E12|Γ,E13).

• While intuitive, many natural generalizations fail and there are known
counter-examples. For example, the above inequality may not hold when
conditioning further on E43, and there are known counter-examples satisfying:

P(E12|Γ) > P(E12|Γ,E13 ∩ E43).

Similarly, if we replace E12 by intersection of events like E12 ∩ E14.
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A correlation inequality for random variables in a matrix

• Theorem: Let Xij
i.i.d.∼ F be continuous random variables.

Let Vij ≡ {Xi ≺ Xj} =
⋂k

l=1{Xil < Xjl}. Then:

P

 n⋂
j=3

V2j

∣∣∣∣ n⋂
j=3

V1j

 ≤ P

 n⋂
j=3

V2j

∣∣∣∣ n⋂
j=3

Vj1

 . (2)

• Remark: The matrix structure of the Xij in the inequality above is quite
specific, and is used in the proof.
An open problem: For Xi

i.i.d.∼ U[0, 1], for what families {Ft ,Gs ∈ [n]× [n]} can
we generalize the inequality to:

P(
T⋂

t=1

⋃
(i,j)∈Ft

Eij |
S⋂

s=1

⋃
(i,j)∈Gs

Eij ) ≤ P(
T⋂

t=1

⋃
(i,j)∈Ft

Eij |
S⋂

s=1

⋂
(i,j)∈Gs

Eij ) .
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Asymptotic Independence

The correlation inequality yields the following asymptotic independence result:
Theorem: If k > 1, then

ek,n ∼ p2
k,n ∼

[
logk−1(n)
n(k − 1)!

]2

as n → ∞

and hence

ρk,n ≡ Corr(Z1,Z2) = o
[
logk−1(n)

n

]
as n → ∞ .

where Zi ≡ Zk,n
i is defined as the indicator r.v. of the event {i ∈ Mk,n}.

This can be used further to prove a CLT for weakly correlated triangular arrays.
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A Central Limit Theorem for Partial Sums

1 For any k ∈ N,

1
npk,n

n∑
i=1

Zk,n
i → 1 as n → ∞ in L2(P) .

2 Let (mn)∞n=1 be a sequence of positive integers such that lim
n→∞

n
mn

= α ∈ (0, 1)
and assume that k > 1. In addition, for any n ≥ 1 and 1 ≤ i ≤ mn denote
Uni ≡

Zni−pk,mn√
pk,mn (1−pk,mn )

, where Zni ≡ Zk,mn
i . Then,

√
n
(

1
n

n∑
i=1

Uni −
1

mn

mn∑
i=1

Uni

)
d−→ N (0, 1 − α) as n → ∞ .

3 ∀k > 1, ∃(mn)∞n=1 such that n ≪ mn ≪ n logk n and:

1
√

n

n∑
i=1

Uni
d−→ N (0, 1) as n → ∞ . (3)

Manuscript: [JZ22]
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Thank You
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