
Identification of rare alleles and their carriers
using compressed se(que)nsing
Noam Shental1,*, Amnon Amir2 and Or Zuk3

1Department of Computer Science, The Open University of Israel, Raanana 43107, 2Department of Physics
of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel and 3Broad Institute of MIT
and Harvard, Cambridge, MA 02142, USA

Received January 17, 2010; Revised June 20, 2010; Accepted July 19, 2010

ABSTRACT

Identification of rare variants by resequencing is
important both for detecting novel variations and
for screening individuals for known disease alleles.
New technologies enable low-cost resequencing
of target regions, although it is still prohibitive to
test more than a few individuals. We propose
a novel pooling design that enables the recovery
of novel or known rare alleles and their carriers
in groups of individuals. The method is based
on a Compressed Sensing (CS) approach, which is
general, simple and efficient. CS allows the use of
generic algorithmic tools for simultaneous identifi-
cation of multiple variants and their carriers. We
model the experimental procedure and show via
computer simulations that it enables the recovery
of rare alleles and their carriers in larger groups
than were possible before. Our approach can also
be combined with barcoding techniques to provide
a feasible solution based on current resequencing
costs. For example, when targeting a small enough
genomic region (�100 bp) and using only �10
sequencing lanes and �10 distinct barcodes per
lane, one recovers the identity of 4 rare allele
carriers out of a population of over 4000 individuals.
We demonstrate the performance of our approach
over several publicly available experimental data
sets.

INTRODUCTION

Genome-wide association studies (GWASs) (1) have been
successfully used in recent years to detect associations
between genotype and phenotype, and numerous new
alleles have been found to be linked to various human
traits (2–4). However, genotyping technologies are
limited to only those variants that are pre-determined

and prioritized for typing, which results in a bias
towards typing of common alleles.
Although many common alleles were lately found to

have statistically significant associations with different
human traits, they were thus far shown to explain only a
small fraction of most traits’ heritability content. This,
together with other theoretical and empirical arguments,
raise the possibility that in fact rare alleles may play a
significant role in the susceptibility of human individuals to
many common diseases (5–8). Discovering and genotyping
of rare alleles may, therefore, be of great bio-medical
interest. However, such studies require genotyping of
large human populations—a task considered infeasible
until recently.
This state of affairs may change dramatically as

we are currently witnessing a rapid revolution in genome
sequencing due to emerging new technologies. Sequencing
throughput at a given cost is growing at an exponential
rate, in similar to Moore’s law for computer hardware (9).
Next-generation sequencing technologies (10–12) utilize
massively parallel reading of short genomic fragments to
achieve several orders of magnitude higher throughput
at the same cost as previous Sanger sequencing machines
(9). The availability of cheap, high-throughput rapid
sequencing methods leads to a change in the way research-
ers approach various biological problems, as it enables
addressing questions that were infeasible to be studied
before.
Next-generation sequencing opens the possibility to

obtain the genomic sequences of multiple individuals
along specific regions of interest. This approach, often
called resequencing, is likely to provide an extensive
amount of novel information on human genetic variation.
In particular, the ability to resequence a large number of
individuals will enable the study of rare alleles in human
populations. Resequencing of large populations can, thus,
fill a gap in our knowledge by allowing us to discover and
type these rare variants, often with frequencies well below
1%, at given pre-defined regions. Of particular interest are
regions around genes or loci that have previously been
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established for the involvement in disease, as they can
be resequenced across a large population to seek novel
variations. A proof of principle of the approach was
demonstrated for Diamond–Blackfan anemia (13) and
breast cancer (14), with many more such studies likely to
be conducted in the near future.
Another important application of interest is

resequencing a set of specific known single nucleotide poly-
morphisms (SNPs) with low minor allele frequency, which
are known or suspected to be important for a certain trait.
In this case, we are interested in identifying individuals
carrying these alleles out of a very large group of indi-
viduals. For example, this may assist in screening large
populations for individuals carrying certain risk alleles
for a potentially lethal disease such as Tay–Sachs or
cystic fibrosis.
The two applications mentioned above can be treated in

a unified framework: namely, identifying the genotypes
of all individuals in pre-defined genomic loci. When de-
tecting known alleles, carriers of the rare allele are, thus,
identified. When identifying novel variants, some of the
genotypes identified are different than the reference
human genome in single-base genomic positions, and rep-
resent a discovery of new rare alleles. Our approach
addresses both applications, and throughout the article
the term ‘identifying rare-allele carriers’ refers to both of
them.
Current next-generation sequencing technologies pro-

vide throughput on the order of millions of reads in
a single ‘run’ or ‘lane’ (9), where a sequence read is typic-
ally a short consecutive DNA fragment of a few dozens to
a few hundreds nucleotides. In addition, novel experimen-
tal procedures enable targeted selection of pre-defined
genomic regions prior to sequencing (15). When perform-
ing targeted sequencing for one or a few small regions,
region enrichment can be achieved via the use of tradi-
tional PCR or novel technologies such as Rainstorm.
When sequencing a larger number of relatively large
regions, the use of ‘hybrid capture’ (or ‘hybrid selection’)
(15–18) enables significant enrichment of the DNA or
RNA within the regions of interest, whose total
combined length might be on the order of millions of nu-
cleotides, and minimizes the number of reads ‘wasted’ on
fragments residing outside these regions. Together, these
high-throughput technologies have made the identification
of carriers over a pre-defined region a feasible, yet still an
expensive task.
A naive but costly option is to utilize one lane per

individual. However, when considering a population of
hundreds or thousands of individuals, such an approach
is prohibitively expensive. Moreover, since resequencing is
typically performed on targeted regions rather than the
whole genome, throughput requirements to sequence an
individual are much lower than the capacity of a single
lane, thus the naive approach is also highly inefficient.
In such cases, ‘pooled’ sequence runs may offer a more

feasible approach. In ‘pooled DNA’ experiments, DNA
from several individuals is mixed and sequenced together
on a single sequencing lane. Pooled genotyping has been
used to quantify previously identified variations and study
allele frequency distributions in populations (19–21).

Given a measurement for each allele, it is possible to
estimate the average frequency of the allele in those indi-
viduals participating in the pool. However, traditional
pooled sequencing was used only to infer the frequency
of rare alleles in a population, and did not give means
to recover the identity of the rare-allele carriers. In this
work, we focus on the latter task, of identifying rare-
allele variants and their carriers by sequencing the
pooled DNA.

The field of group testing (22) aims to tackle this
problem of identifying individuals carrying a certain
trait out of a group, by designing an efficient set of tests,
i.e. pools. This field, which dates back to the mid-20th
century has applications in several fields including molecu-
lar biology (22). Recently, several works have tried to use
resequencing-based group testing methods in order to
identify rare-allele carriers.

Prabhu and Pe’er (23) offered to use overlapping pools,
elegantly designed based on error-correcting codes, to
enable the recovery of a single rare-allele carrier from
multiple pools. Individuals are represented in multiple
pools, where the composition of different pools is con-
structed in a way that provides a unique pooling ‘signa-
ture’ for each individual. This carefully designed scheme
enables the recovery of a rare-allele carrier by observing
the presence of reads containing the rare allele in these
‘signature’ pools. Their design offers a significant saving
in resources, as it enables the recovery of a single carrier
out of N individuals, by using only a number of pools
logarithmic in N. However, this method is limited to the
case of a single rare-allele carrier within the group, and the
problem of detecting multiple (albeit few) carriers
remained unsolved. [The group testing literature does
offer means of addressing the multiple carrier case, e.g.
(24–26)].

In another approach by Erlich et al. (27), a clever
barcoding scheme combined with pooling was used, in
order to enable the identification of each sample’s geno-
types. When using barcoding, each sample is ‘marked’ by
a unique short sequence identifier, i.e. barcode, thus upon
sequencing one can identify the origin of each read accord-
ing to its barcode, even when multiple samples are mixed
in a single lane. Ideally, one could assign a different
barcode to each individual sample, and then mix many
samples in each lane while keeping the identity of each
read based on its barcode. However, barcoding is a
costly and laborious procedure, and one wishes to
minimize the number of barcodes used. It was, therefore,
suggested in (27) to barcode different pools of samples
(rather than individual samples), thus allowing the
barcode to identify the pool from which a certain read
was obtained, but not the identity of the specific sample.
Efficient algorithms based on the Chinese Remainder
Theorem enable the accurate recovery of rare-allele
carriers, where both the total number of pools and the
number of individual samples participating in each pool
were kept low—the identification of N individual geno-
types was obtained by using �

ffiffiffiffi
N
p

different pools with
�

ffiffiffiffi
N
p

individuals per pool.
In this work, we present a different approach to re-

covering rare-allele variants and the identity of individuals
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carrying them, based on Compressed Sensing (CS). CS
and group testing are intimately connected (28), and our
work can be seen as an application of this approach in the
context of rare-allele identification [a somewhat similar
approach has independently been developed by Erlich
et al. (29)]. Our work extends the idea of recovering the
identity of rare-allele carriers using overlapping pools
beyond the single carrier case analyzed in (23), and deals
with heterozygous or homozygous rare alleles. The CS
pooling approach enables testing of a larger cohort of
individuals, thus identifying carriers of rarer SNPs. The
CS paradigm also adapts naturally and efficiently to the
addition of barcodes. We propose CS as a simple, generic
and highly useful approach to identifying rare-allele
carriers.

CS (30,31) is a new emerging and very active field of
research, with foundations in statistics and optimization.
New developments, updates and research papers in CS
appear literally on a daily basis, in various websites (e.g.
http://dsp.rice.edu/cs) and blogs (e.g. http://nuit-blanche
.blogspot.com/). Applications of the CS theory can be
found in many distantly related fields such as magnetic
resonance imaging (32), single-pixel cameras (33), geo-
physics (34), astronomy (35) and multiplexed DNA micro-
arrays (36).

In CS, one wishes to efficiently reconstruct an un-
known vector of values x=(x1, . . . , xN), assuming that x
is sparse, i.e. has at most s non-zero entries, for some
s�N. It has been shown that x can be reconstructed
using k�N basic operations termed ‘measurements’,
where a measurement is simply the output y of the
dot-product of the (unknown vector) x with a known
measurement vector m, y=m�x. By using the values of
these k measurements and their corresponding m’s, it is
then possible to reconstruct the original sparse vector x.

Mapping of group testing into a CS setting is simple.
The entries of x contain the genotype of each individual
at a specific genetic locus and are non-zero only for
minor allele carriers; thus, since we are interested in rare
alleles x is indeed sparse. A measurement in our setting
corresponds to sequencing the DNA of a pool of several
individuals taken together, hence the measurement vector
represents the individuals participating in a given pool
and the output of the measurement is proportional to
the total number of rare alleles in the pool. Our basic
unit of operation is a single ‘run’ or ‘lane’, which is used
to sequence L pre-defined different loci in the genome,
whether consecutive in one specific region, taken from dif-
ferent genomic regions or surrounding different SNPs. We
treat each of the L different loci separately and reconstruct
L different vectors x, thus the amount of computation
increases linearly with the number of loci of interest.

Formulating the problem in terms of CS opens the door
to utilizing this rich theory for our purposes. In particular,
when designing a pooling experiment, one can use theor-
etical results such as CS bounds to estimate the number of
samples and pools needed for successful reconstruction,
and the robustness of the reconstruction to noise.
At the data analysis stage, when trying to reconstruct
the rare-allele carriers, we can apply numerous algorithms
and techniques available for CS problems, and benefit

from the development of faster and more accurate recon-
struction algorithms as the state of the art is constantly
improving (37). We thus argue that CS is a suitable
approach for identifying rare-allele carriers, and hope
that this article is merely a first step in this direction.
In this work, we present results of extensive simulations,

which aim to explore the benefits and limitations of
applying CS for the problem of identifying carriers of
rare alleles in different scenarios. We provide a detailed
model of the experimental procedure typical to next gen-
eration sequencing and find scenarios in which the benefit
of applying CS is overwhelmingly large (up to over �70�
improvement) compared to the naive one-individual-
per-lane approach. We also show that our method can
be used in addition to barcodes, to provide a significant
improvement over applying either barcoding or CS solely.
In Appendices 1–3, we provide applications of the CS

approach to experimental data. Appendix 1 is based on
pooled data by Out et al. (38), which contains next gener-
ation sequencing of several SNPs in a single pool of 88
individuals. We have ‘transformed’ their data into the CS
setting, which requires several pools, by performing a
bootstrap simulation based on read statistics obtained
from the actual data. This enabled us to perform a more
realistic analysis, which approximates true pooling experi-
mental data, and was shown to be in good accordance
with our simulations’ results. In Appendix 2 we provide
analysis of next generation sequences obtained in the Pilot
3 study of the 1000 Genomes Project. By using
experimental reads to simulate pools, we show the applic-
ability of the CS approach to large scale SNP identifica-
tion using only a small fraction of the required sequencing
lanes. Finally, we analyzed a data set that combines
barcodes and pooling given in (27). Using this data set,
Erlich et al. aimed to identify a large number of shRNA
sequences via pooling experiments. Although this problem
is different than the problem of rare-allele detection, we
show in Appendix 3 that our CS approach can also be
applied to this problem, thus demonstrating its success
on a large-scale real-life pooling experiment.
The rest of the article is organized as follows:

‘Materials and Methods’ section presents CS in the
context of identifying carriers of rare alleles. We
discuss the specific details of our proposed pooling
design, genotype reconstruction algorithm and present a
noise model reflecting the pooled sequencing process.
The ‘Results’ section presents simulations, and provides
evidence for the efficiency of our approach along a wide
range of parameters. Finally, the ‘Discussion’ section
offers conclusions and outlines possible directions for
future research.

MATERIALS AND METHODS

We first provide a short overview of CS, followed by a
description of its application to our problem of identifying
rare alleles, and the corresponding mathematical formula-
tion including a noise model reflecting the sequencing
process. Finally, we show how one performs reconstruc-
tion while utilizing barcoding.
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The CS problem

In a standard CS problem, one wishes to reconstruct a
sparse vector x of length N, by taking k different meas-
urements yi=mi�x, i=1, . . . , k. This may be represented
as solving the following set of linear equations:

Mx ¼ y ð1Þ

where M is a k�N measurement matrix or sensing matrix,
whose rows are the different mi’s (as a general rule, we use
upper-case letters to denote matrices: M,E, . . . , lower
boldface letters to denote vectors: x,y, . . . and lower case
to denote scalars: x, y, xi, . . .).
Typically in CS problems, one wishes to reconstruct x

from a small number of measurements, i.e. k�N, hence
the linear system (1) is under-determined; namely, there
are ‘too few’ equations or measurements and x cannot be
recovered uniquely. However, it has been shown that if x
is sparse, and M has certain properties, the original vector
x can be recovered uniquely from Equation (1) (30,31).
More specifically, a unique solution is found in case
k > Cs logðN=sÞ, where C is a constant and s the number
of non-zero entries in x. This somewhat surprising result
stems from the fact that the desired solution x is sparse,
thus contains less ‘information’ than a general solution.
Therefore, one can ‘compress’ the amount of measure-
ments or ‘sensing’ operations required for the reconstruc-
tion of x.
A sufficient condition for a sensing matrix to allow a

correct reconstruction of x is satisfying a property known
as ‘uniform uncertainty principle’ (UUP) or restricted
isometry property (39,40). Briefly, UUP states that any
subset of the columns of M of size 2s forms a matrix
that is almost orthogonal (although since k<N the
columns cannot be perfectly orthogonal), which, in
practice, makes the matrix M ‘invertible’ for sparse
vectors x. The construction of a ‘good’ sensing matrix is
an easy task when one is able to use randomness. An
example of a UUP matrix is a Bernoulli matrix; namely,
a matrix whose entries are independent random variables
set to be 1 or �1 with probability 0.5. It is known that a
given instance of such a random matrix will satisfy UUP
with an overwhelming probability (41–42) (the same is
true when each entry in the matrix is a standard
Gaussian random variable.)
Once M and y are given, CS aims to find the sparsest

possible x, which obeys Equation (1). This can be written
as the following optimization problem:

x� ¼ argmin
x

jjxjj0 s:t: Mx ¼ y ð2Þ

where the ‘0 norm jjxjj0 �
P

i 1fxi 6¼0g simply counts the
number of non-zero elements in x.
Problem (2) involves a non-convex ‘0 term and can be

shown to be computationally intractable in general (43).
However, another impressive breakthrough of CS theory
is that one can relax this constraint to the closest convex ‘p
norm; namely, the ‘1 norm, and still get a solution that,
under certain conditions, is identical to the solution of
Problem (2). Hence the problem is reformulated as the

following ‘1 minimization problem, which can be effici-
ently solved by convex optimization techniques:

x� ¼ argmin
x

jjxjj1 s:t: Mx ¼ y ð3Þ

In most realistic CS problems measurements are cor-
rupted by noise, hence Equation (1) is replaced by
Mx+� ¼ y, where � ¼ ð�1, . . . , �kÞ are the unknown
errors in each of the k measurements, and the total meas-
urement noise, given by the ‘2 norm of � is assumed to
be small. Therefore, the optimization problem is
reformulated as follows:

x� ¼ argmin
x

jjxjj1 s:t: jjMx� yjj2 	 � ð4Þ

where e > 0 is set to be the maximal level of noise we are
able to tolerate, while still obtaining a sparse solution. It is
known that CS reconstruction is robust to noise, thus
adding the noise term e does not cause a breakdown of
the CS machinery, but merely leads to a possible increase
in the number of required measurements k (40).

Many efficient algorithms are available for Problem (4)
and enable a practical solution even for large matrices,
with up to tens of thousands of rows. We have chosen
to work with the commonly used gradient projection for
sparse reconstrucion (GPSR) algorithm (44).

Rare-allele identification in a CS framework

We wish to reconstruct the genotypes of N individuals at a
specific locus. The genotypes are represented by a vector x
of length N, where xi represents the genotype of the i-th
individual. We denote the reference allele by A and the
alternative allele by B. The possible entries of xi are 0, 1
and 2, representing a homozygous reference allele (AA), a
heterozygous allele (AB) and a homozygous alternative
allele (BB), respectively. Hence, xi counts the number of
(alternative) B alleles of the i-th individual, and since we
are interested in rare minor alleles, most entries xi are zero.
In classic CS the unknown variables are typically real
numbers. The restriction on x in our case is expected to
reduce the number of measurements needed for recon-
struction and may also enable using faster reconstruction
algorithms, as it is known that even a weaker restriction,
namely, that all entries are positive, already simplifies the
reconstruction problem (45).

The sensing matrix M is built of k different measure-
ments represented by the rows ofM. The entry mij is set to
1 if the j-th individual participates in i-th measurement,
and zero otherwise. Each measurement includes a random
subset of individuals, where the probability to include a
certain individual is 0.5. Hence, M is equivalent to the
Bernoulli matrix mentioned in the previous section,
which is known to be a ‘good’ sensing matrix (another
type of a sensing matrix, in which only �

ffiffiffiffi
N
p

elements
in each measurement are non-zero is considered in the
‘Results’ section).

In practice, measurements are performed by taking
equal amounts of DNA from the individuals chosen to
participate in the specific pool, thus their contribution to
the mixture is approximately equal. Then, the mixture is
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amplified using PCR, which ensures that the amplification
bias generated by the PCR process affects all individuals
equally (46). Finally, DNA of each pool is sequenced in a
separate lane, and reads are mapped back to the reference
genome [this may be performed using standard alignment
algorithms such as MAQ (47)]. For each locus of interest,
we record the number of reads containing the rare allele
together with the total number of reads covering this locus
in each pool, denoted by r. These numbers provide the
measurement vector y representing the k frequencies
obtained for this locus in the k different pools. The meas-
urement process introduces various types of noise, which
we model in the next section.

For each locus, our goal is to reconstruct the vector x,
given the sensing matrix M and the measurement vector y,
while realizing that some measurement error e is present
[see Equation (4)]. Our experimental design is illustrated in
Figure 1, and the following section describes its mathem-
atical formulation.

Mathematical formulation of our model

The model presented here, including the range of param-
eters chosen, aims at reflecting the sequencing process by
the Illumina technology (11), but may also be applied to
other next generation technologies. It is similar, but not
identical, to the model presented in (23). For clarity of
presentation, we first describe our model while ignoring
the different experimental noise factors, and these are
added once the model is established.

Noiseless model. Let x be the unknown sparse genotypes
vector, as described in the previous section. The fraction

of individuals with the rare allele is denoted f, thus the
vector x has s= fN non-zero elements. [Here and through-
out the article we define the fraction of individuals, rather
than alleles, as the ‘carrier frequency’—thus the fraction of
alternative alleles, assuming Hardy–Weinberg (HW) equi-
librium, is in fact 1�

ffiffiffiffiffiffi
1�f
p

, which is approximately f/2 when
f is small.] M is a k�N Bernoulli sensing matrix, and we
denote by M̂ the normalized version of M whose entries
represent the fraction of each individual’s DNA in each
pool

m̂ij �
mijPN
j¼1 mij

ð5Þ

Assume that the mixing of DNA is perfect and
unbiased, and that each DNA segment from each individ-
ual in a pool is equally likely to be read by the sequencing
machinery. Suppose that a read from the i-th pool is
drawn from a DNA segment covering our desired locus.
It is then expected that this read will contain the B allele
with probability qi �

1
2 m̂i � x, where m̂i is the i-th row of M̂

(the 1
2 pre-factor is due to the fact that both alleles are

sequenced for each individual). The vector of frequencies
of the B allele, for each of the k pools is therefore

q ¼
1

2
M̂x ð6Þ

Had we been able to obtain a full and error-free
coverage of the DNA present in the pool, our measure-
ments would have provided us with the exact value of q.
In practice, a specific position is covered by a limited
number of reads, which we denote by r, and the number
of reads from the rare alleles z out of the total number of
reads r is binomially distributed zi �Binomial(r,qi).
Generally, one can only control the expected number of
reads covering a specific locus, as r is also considered a
random variable. Denoting R the total number of reads in
a lane, the expected number of reads assigned to each
locus is R

L. The main cause for variation in r between dif-
ferent genomic regions is the different amplification biases
for different genomic sequences, which are effected by
properties such as a region’s GC-content. The distribution
of r over different loci depends on the experimental con-
ditions, and was shown to follow a Gamma distribution
in certain cases (23). We adopt this assumption, draw r
for each locus from a Gamma distribution r � �ðR

L ,1Þ, and
apply it to all k pools.
This binomial sampling process provides measurements

that are close, yet not identical to the expected frequency
of the rare allele rqi, and these fluctuations are regarded as
sampling noise. Therefore, the CS problem formulation is
given by [compare to Equation (4)]

x� ¼ argmin
x2f0,1,2gN

k x k1 s:t: jj
1

2
M̂x�

1

r
zjj2 < � ð7Þ

Adding noise factors. The model described so far assumes
that no noise or bias exist in our setting, besides sampling
noise that is related to the limited number of reads used in
practice. In a more realistic scenario, we do expect

Figure 1. Schematic description of the CS based procedure. Shown is a
case of nine people, out of which one is a heterozygotic carrier of the
rare SNP (marked green), and another one who is a homozygous al-
ternative allele carrier (marked red.) Each sample is randomly assigned
to a pool with probability 0.5, as described by the sensing matrix. For
example, individuals 1,4,6,7 and 9 are assigned to the first pool. The
DNA of the individuals participating in each pool is mixed, and the
fraction of rare alleles in each pool is measured. For example, the first
pool contains the two carriers, hence the frequency of the B0s is 1+2
out of the 2� 9 alleles. The sensing matrix and the resulting frequencies
are incorporated into an underdetermined set of linear constraints,
from which the original rare SNP carriers are reconstructed.
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additional noise factors to be present due to imperfection
in experimental procedures. We have modeled these
factors by adding two more types of noise: sequencing
read errors and DNA preparation errors (DP errors).
Read error models the noise factors introduced

throughout the process of sequencing by next generation
techniques such as Illumina, and reflects the fact that reads
obtained from the sequencing machine may not match the
DNA molecule sampled. This can be due to errors in
certain bases present in the read itself, mis-alignment of
a read to a wrong place in the genome, errors introduced
by the PCR amplification process [which are known to
introduce base substitutions in the replicated DNA (48)],
or any other unknown factors. All of these can be modeled
using a single parameter er, which represents the probabil-
ity that the base read is different from the base of the
measured sample’s DNA at a given locus. The resulting
base can be any of the other three different nucleotides;
however, we conservatively assume that the errors will
always produce the alternative allele B (if, e.g. the refer-
ence allele is ‘G’ and the alternative allele is ‘T’, we assume
that all erroneous reads produce ‘T’. In practice, it is likely
that some reads will produce ‘A’ and ‘C’, and these can be
immediately discarded, thus, reducing the effective error
rate). The probability of observing B at a certain read is,
therefore, obtained by a convolution of the frequency of B
alleles and the read error

q ¼ ð1� erÞ
1

2
M̂x+er 1�

1

2
M̂x

� �
ð8Þ

The value of er may vary as a function of the sequencing
technology, library preparation procedures, quality
controls and alignment algorithms used. Typical values
of er, which represent realistic values for Illumina
sequencing (49), are in the range er � 0:5%� 1%. We
assume that er is known to the researcher, and that it is
similar across different lanes. In this case, one can correct
for the convolution in Equation (8) and obtain the
following problem:

x� ¼ argmin
x2f0,1,2gN

k x k1 s:t: jj
1

2
M̂x� ð

1

r
z� erÞ=ð1� 2erÞjj2 < �

ð9Þ

Hence the measurement vector in our problem equals
y ¼ ð1r z� erÞ=ð1� 2erÞ and the sensing matrix is 1

2 M̂. If
er is unknown, one may still estimate it, for example by
running one lane with a single region on a single individ-
ual with known genotypes. Alternatively, we show in
Appendix 4 how to incorporate the estimation of the
read error term er within our CS framework from the
overlapping pooled sequence data. The noise factors
described thus far (including sampling noise and read
errors) resemble the ones proposed previously in (23).
Finally, we add to our model one more source of noise,

namely DP errors. This error term reflects the fact that in
an experimental setting it is hard to obtain exactly equal
amounts of DNA from each individual. The differences in
the actual amounts taken result in noise in the measure-
ment matrix M. While M is our original zero-one

Bernoulli matrix, the actual measurement matrix M 0 is
obtained by adding DP errors to each non-zero entry.
Hence, the true mixture matrix is M 0 �M+D, where the
DP matrix D adds a centered Gaussian random variable
to each non-zero entry of M

dij �
Nð0, �2Þ if mij ¼ 1
� 0 otherwise:

�
ð10Þ

We consider values of s in the range 0–0.05 reflecting
up to �5% average noise on the DNA quantities of each
sample. These values are consistent with errors encoun-
tered in real pooling experiments, and in fact a level of
5% serves as a very conservative estimate. For example, in
(50) it is shown that pooling variation is within the lower
end of our considered range. Recent pooled sequencing
experiments exhibit variation of at most 1% between in-
dividuals (M. Rivas, private communication). The matrix
M 0 is unknown and we only have access to M, hence the
optimization problem in Equation (9) is unchanged in this
case. M 0 takes effect indirectly by modifying q, which
effects z, the actual number of reads from the rare allele.
As opposed to a classic CS problem in which the sensing
matrix is usually assumed to be known exactly, DP effect-
ively introduces noise into the matrix itself. We study this
effect of DP errors in the ‘Results’ section, and show that
a standard CS approach is robust to such noise.

Targeted region length and coverage considerations. The
expected number of reads from a certain locus is
determined by the total number of reads in a lane R and
the number of loci covered in a single lane L, and is given
by E½r
 ¼ R

L (we assume that the actual number of reads
from each locus r follows a Gamma distribution with
mean R=L).

L is determined by the number and size of the regions or
the number of SNPs of interest in a given study, and by
the ability of targeted selection techniques (16–18) to
enrich for a given small set of regions. We consider L as
a parameter and study its effect on the results. When inter-
ested in contiguous genomic regions, L should be inter-
preted as the length of the target region in reads, rather
than nucleotides, since each read covers many consecutive
nucleotides. Therefore, one should multiply L by the read
length to get the total length of the targeted regions in
base-pairs. For example, if our reads are of length 50 nt,
and L is taken to be 100, we in fact cover a genomic region
of length 5 kb. When we treat different isolated SNPs, L
represents the number of SNPs we cover, as each read
covers one SNP and the rest of the read is ‘wasted’ on
nucleotides adjacent to the SNP of interest.

R is defined as the number of reads that were success-
fully aligned to our regions of interest. It is mostly
determined by the sequencing technology, and is typically
in the order of millions for modern sequencing machines.
R is also greatly influenced by the number and length of
the target regions and the targeted selection techniques
used—since these techniques are not perfect, a certain
fraction of reads might not originate from the desired
regions and is thus ‘wasted’. The total number of reads
varies according to experimental protocols, read length
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and alignment algorithms. Throughout this article we
have fixed R to be R=4000 000, representing a rather
conservative estimate of a modern Illumina genome ana-
lyzer’s run [e.g. compare to (9)], and also assuming that
targeted selection efficiency is high [it was reported to be
as high as �90% for relatively large genomic regions in
(17)]. Other values of R may be easily dealt with using our
simulation framework, thus adapting to a particular re-
searcher’s needs.

Another important and related parameter is the average
coverage per individual per SNP, denoted c, which is
given by

c ¼
R=L

N=2
�

E½r


N=2

� �
ð11Þ

Our model does not directly use c and it is provided
merely as a rough estimate for the coverage in the
‘Results’ section, as it can be easily interpreted and
compared to coverage values quoted for single sample
sequencing experiments. When the total number of reads
in a pool r is given, the actual coverage obtained for each
person in a pool has a distribution that is approximately
Binomial(r,1/Npooled), where Npooled �

N
2 is the number of

individuals in the pool. Therefore, the average coverage
per individual in a given pool is indeed approximately c.

Example

To visualize the effect of the three noise factors, i.e.
sampling noise, read errors and DP errors, Figure 2
presents the measured values y in a specific scenario. We
simulate an instance of N=2000 individuals and carrier
frequency f ¼ 0:1%, tested over k=50 pools. Hence, we
have two heterozygotic carriers to be identified, and, in the
absence of noise, the measurement in each pool should
display three levels, which correspond to whether 0, 1 or
2 of the carriers are actually present in the specific pool.
To display the effect of sampling noise, we consider

three values for the average coverage c, i.e. number of
reads per individual per SNP: 40, 400 and an infinite
number of reads, which corresponds to zero sampling
noise. Each of these three values appears on a separate
row in Figure 2. The panels on the left-hand side of
Figure 2 correspond to read error er ¼ 1%, while on the
right-hand side there is no read error at all. The data in all
panels contain DP errors with s=0.05. Each panel also
displays the actual number of reconstruction errors in
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Figure 2. Example of measured values. The values measured for 50 different pools, for a specific case of N=2000 individuals and carrier frequency
f ¼ 0:1%, thus two individuals carry the alternative allele. Shown are the measured carrier frequencies in each pool, for different coverage levels,
(40, 400 and 1 reads per pool), and different values of the read error (er ¼ 0% and 1%). The data in all panels contain DP errors with s=0.05.
The dashed lines represent the expected frequencies corresponding to 0,1,2 and 3 rare-allele carriers in a pool. For example, the frequency 10�3

corresponds to two carriers, calculated as the number of rare alleles (2) divided by twice the number of individuals per pool (1000). These frequencies
(excluding the one corresponding to three carriers) are the values we would have obtained in the absence of read error, DP errors, and assuming that
each pool contains exactly N/2 individuals. The coverage r (i.e. number of reads) is the most dominant factor causing deviations of the observed
values from their expectancy.
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each case, namely the number of individuals whose
genotype was incorrectly inferred, or mathematically
speaking, the Hamming distance between the correct
vector x and reconstructed vector x* obtained by solving
Equation (9).
The effect of sampling noise is clearly visible in Figure 2.

An infinite amount of reads (Figure 2e and f), causes the
measurements to be very close to their expected frequency,
where slight deviations are only due to DP errors and the
fact that the pool size is not exactly N/2. For a moderate
number of reads [c=400—Figure 2c and d)], the meas-
urements follow the expected frequency levels when
there are no read errors (Figure 2d), but this rough quant-
ization completely vanishes for er ¼ 1% (Figure 2c).
However, reconstruction was accurate even in this case,
because our CS formulation [Equation (9)] takes these
errors into account and aggregate the information from
all pools to enable reconstruction. When the number of
reads per person is small (c=40—Figure 2a and b), the
three levels disappear irrespective of the read error.
Reconstruction is still accurate in the absence of read
errors (Figure 2b), and there are three errors in the recon-
structed genotype vector x* when er ¼ 1% (Figure 2a),
which probably implies that sampling noise is too high
in this case (in Figure 2a, there are many pools for
which the measurement reaches the level which corres-
ponds to three carriers.) While a coverage of 40 reads
per person is overwhelmingly sufficient when sequencing
a single individual, it leads to errors in the reconstruction
when pooling many individuals together.

Reconstruction

We use the GPSR algorithm (44), to solve the optimiza-
tion Problem (9). GPSR is designed to solve a slightly
different, but equivalent, formulation as in Equation (9)

x� ¼ argmin
x

jj
1

2
M̂x� ð

1

r
z� erÞ=ð1� 2erÞjj2+�jjxjj1

ð12Þ

where the parameter t provides the trade-off between the
equations fit and the sparsity promoting factor, and is
equivalent to specifying the maximal allowed error e in
Equation (9). It is often desirable in applications to let
the parameter t scale with ||MTy||1 (51), where in our
case y ¼ ð1r z� erÞ=ð1� 2erÞ corresponds to the measure-
ments. We have chosen to adopt this scaling throughout
this article, and have set � ¼ 0:01jjM̂Ty||1, although ex-
perimentation with different values of t did not alter
results significantly.
GPSR outputs a sparse vector x* with a few non-zero

real entries, but does not use the fact that our variables
are integers from the set f0,1,2}. We, therefore, perform
a post-processing step in order to obtain such a
solution. Simple rounding of the continuous results in
x* may obtain such a vector. We chose an alternative
common heuristic as a post-processing scheme, which
yields better performance: we rank all non-zero values
obtained by GPSR, and round the largest s non-zero
values, setting to zero all other N�s values to get the

vector x*s. We then compute an error term
errs � jj

1
2 M̂x�s � yjj2. Repeating this for different

values of s, we select the vector x*s, which minimizes
the error term errs. Thus, the final solution’s sparsity s is
always smaller or equal to the sparsity of the vector
obtained by GPSR.

Utilizing barcodes

In this section, we describe how a CS-based method can
be combined with a barcoding strategy resulting in
improved performance. A barcode is obtained by attach-
ing to the DNA in each sample, a unique DNA sequence
of a few additional nucleotides, which enables the unique
identification of this sample (52). Hence, samples with
different barcodes can be mixed together into a single
lane, and reads obtained from them can be uniquely
attributed to the different samples. In a pooled-barcodes
design (27), the DNA in each pool (as opposed to the
DNA of a specific individual) is tagged using a unique
barcode. If nbar different barcodes are available, we may
apply nbar pools to a single lane and still identify the pool
from which each read originated (although not the
specific individual.)

Utilizing barcodes increases the number of pools per
lane, while reducing the number of reads per pool. The
usage of k lanes and nbar barcodes is simply translated into
solving Problem (9) with k� nbar pools and R/nbar total
reads per lane. Barcodes can, therefore, be combined
easily with our CS framework so as to improve efficiency.
We did not try to estimate the relative cost of barcodes
and lanes as it may vary according to lab, timing and
technology conditions. We, therefore, solve the CS
problem for different (k,nbar) combinations, thus present-
ing the possible trade-offs.

Simulations

We have run extensive simulations in order to evaluate the
performance of our approach. Various parameter ranges
were simulated, where each set of parameters was tested in
500 instances. In each simulation, we have generated an
input genotype vector x, applied measurements according
to our mathematical model, and have tried to reconstruct
x from these measurements. To evaluate the performance
of our approach, one needs a measure of reconstruction
accuracy, reflecting the agreement between the input
vector x and the reconstructed CS vector x* (even when
executing the naive and costly approach of sequencing
each individual in a separate lane, one still expects
possible disagreements between the original and recon-
structed vectors due to insufficient coverage and techno-
logical errors.) Each entry i for which xi is different from
x�i is termed a reconstruction error, and implies that the
genotype for a certain individual was not reconstructed
correctly, yielding either a false positive (xi ¼ 0 6¼ x�i ) or
a false negative (xi 6¼ 0 ¼ x�i ). For simplicity, we have
chosen to show a simple and quite restrictive measure of
error: we distinguish between two ‘types’ of reconstruc-
tions—completely accurate reconstructions that have
zero errors, and reconstructions for which at least one
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error occurred. A certain value of the problem’s param-
eters (such as number of individuals, number of pools,
read error, etc.) is termed ‘successful’ if at least 95% of
its instances (i.e. 475 out of 500) had zero reconstruction
errors, namely all individual genotypes were reconstructed
correctly. Thus, even when testing for a few thousand
individuals, we require that none of the reference allele
carriers will be declared as a rare-allele carrier. In par-
ticular, this requirement guarantees that the false
discovery rate of discovering rare-allele carriers will not
exceed 0.05.

Performance is then measured in terms of Nmax, defined
as the maximal number of individuals that allows for a
‘successful’ reconstruction, for certain values of the prob-
lem’s parameters.

RESULTS

To explore the advantages of applying CS for efficiently
identifying carriers of rare alleles, we performed various
computer simulations of the experimental procedure des-
cribed in the ‘Materials and Methods’ section (a Matlab
implementation is available at www.broadinstitute
.org/mpg/comseq/).

In each instance of a simulation, we followed the
scheme in Figure 1. We grouped together N individuals,
with a certain carrier frequency f, where f was chosen to be
0:1%, 1% and 2%. Thus, we randomly selected s=Nf
carriers, and this determined our input vector x. Since
carrier frequency is low, we mostly considered the case
of a heterozygous allele (AB), hence x is a binary vector,
with 1’s marking the carriers.The rare case of a homozy-
gous alternative allele (BB), where x can also contain the
value 2, was considered separately in a specific simulation.

We then simulated k different pools, where in each pool
�N/2 individuals were chosen at random, and their pooled
DNA was sequenced in a separate lane. Sequencing results
of the k pools were used to reconstruct x. The larger the
number of pools (or lanes) k, the more information is
available for reconstruction, and one can consider larger
groups of individuals N.

Each of the k pools is designed to target L different loci
where L was selected to be 1, 10, 100 or 500 (correspond-
ing to targeted regions of length 100 bp to 50 kb, assuming
each read is of length 100). The larger L the less reads are
received from each targeted locus, thus reducing coverage
and increasing sampling noise. The other noise factors
were kept fixed, with read error er ¼ 1% and DP error
s = 0.05, unless specified otherwise. Our simulations im-
plicitly assume that coverage is sequence independent, i.e.
each of the L loci is equally likely to be sequenced.
We take this simplifying assumption for the sake of gen-
erality and clarity; however, the specific effects of coverage
is considered in one of the examples.

In the following section, we estimate the performance of
CS given all relevant noise factors, and show that correct
reconstruction may be performed in the presence of real-
istic or even highly pessimistic noise levels. In the ‘Noise
Effects’ section we evaluate the individual effect of each of
the three noise factors, i.e. sampling noise, read errors and

DP errors. We then shortly present the effect of using a
different sensing matrix in which only �

ffiffiffiffi
N
p

individuals
participate in each pool, instead of �N/2. We show that
each pooling scheme is advantageous in a different
scenario. Finally, we present the effect of combining
CS and barcodes, and display how barcodes boost CS
performance.

Performance of the ‘standard’ experimental setup

We analyzed the value of Nmax as a function of k, for
different numbers of SNPs sequenced together on the
same lane. The case f ¼ 0:1% displayed a different
behavior than f ¼ 1% and f ¼ 2% and is considered
separately.

The case of f ¼ 0:1%. The advantages of CS appear most
dramatically in the case of rare alleles, e.g. for f ¼ 0:1% in
Figure 3. Each panel in Figure 3 presents Nmax as a
function of k, for different numbers of SNPs L. The
number of rare-allele carriers tested in this case were
1, 2, . . . , 20, leading to N=1000, 2000, . . . , 20000. The
vertical right axis displays the corresponding average
coverage c, obtained via Equation (11). The thick black
line in each figure is simply the line y= x, demonstrating
the performance of the naive approach of using a single
lane per sample.
When the number of available pools was large, we were

able to successfully identify the carriers in groups of up to
9000 or 20 000 individuals, for k=500 pools, and L=10
or 1, respectively (Figure 3 upper panels). In case the
number of available pools was small, we could still
identify a single carrier out of 1000 individuals with
merely k=20 pools, for L=1 and 10. (inset in Figure
3a and b). With k=30 (40) pools, we identified 2 (3)
carriers in a group of 2000 (3000), for L=1 (L=10).
As evident from the four panels of Figure 3, Nmax

decreased as a function of L. For example, 500 pools
were sufficient to deal with 20 000 individuals for L=1,
but only with 1000 individuals for L=500. This results
from insufficient coverage that caused an increase in
sampling noise. Increasing the number of pools can
overcome this under-sampling as the value of Nmax in-
creases almost linearly with k in most cases.
To quantify the advantage of applying CS, we defined

an ‘efficiency score’, presented in Figure 4, which is simply
Nmax/k, i.e. the number of individuals for which recon-
struction can be performed using the CS approach for a
given number of pools, divided by the number of individ-
uals that can be treated using the naive one-individual-
per-lane approach. Therefore, the higher the score, the
more beneficial it is to apply CS. The black line in each
plot has a value of 1, which corresponds to the naive
scenario of one individual per lane. When considering
up to L=100 SNPs, the efficiency score was around or
above 10, and in some cases was as high as 70.
The axis on the right-hand side of Figure 3 displays the

average number of reads per person, i.e. average coverage
c, for the relevant Nmax. One important question is related
to the optimal number of reads which allows for successful
reconstruction: the smaller the coverage the more SNPs
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we can test on the same lane, yet we are more prone to
(mostly sampling) noise. However, one can overcome the
effects of low coverage by increasing the number of pools,
hence it was interesting to test the performance for each

combination of coverage c and number of pools k.
In addition, such information may be important to
evaluate the effect of sequence-dependent coverage. In
reality, the expected coverage may follow a certain

Figure 3. Nmax as a function of the number of pools k for f ¼ 0:1%. The maximal number of individuals Nmax, which allow for a ‘successful’
reconstruction as a function of the number of pools used, for different numbers of loci treated simultaneously. A ‘successful’ reconstruction means
that for a certain set of parameters at least 475 out of 500 simulations yield zero reconstruction errors. The black line is simply the line y= x,
demonstrating the performance of the naive approach of using a single lane per sample. The vertical right axis displays the corresponding average
coverage c for every value of Nmax, obtained via Equation (11). The insets in the top panels are zooming in on the region where the number of pools
is small, which is at present the most realistic scenario (in the lower left panel Nmax was constant for low numbers of pools). The values of Nmax in
this case were taken in units of 1000 individuals, which correspond to single carriers. Cases which appear to be missing, e.g. k< 200 for L=500
simply mean that Nmax< 1000.

Figure 4. Efficiency score of our approach for f ¼ 0:1%. The ratio Nmax/k between the number of individuals treated by our approach and the
number treated in the naive approach (equal to the number of pools.) This represents the ratio of saved resources (pools.) Efficiency is highest when
a few pools are used, and decreases gracefully as we use more and more pools. Efficiency is highest when the targeted number of loci is small, as in
this case each lane provides very high coverage.
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distribution depending on the sequence. Hence, it may be
interesting to present reconstruction quality as a function
of the expected coverage. In Figure 5, we present this per-
formance for N=2000 individuals and f ¼ 0:1%. For

each pair of coverage c and number of pools k, we color
coded the percentage of instances for which there were
errors in CS reconstruction. An improvement in perform-
ance may be achieved both by increasing the coverage and
by increasing the number of pools. The white line marks
the 95% accuracy threshold. The transition between ‘suc-
cessful’ and ‘unsuccessful’ reconstruction was rather
sharp. For low coverage, e.g. lower than 100 reads per
person, a very high number of pools was needed in
order to overcome sampling noise.

The case of f ¼ 1%, f ¼ 2%. Figure 6 presents the results
for f ¼ 1% and 2%. In this case, the values of N tested
were 100, 200, . . . , 4000 (no successful reconstruction ac-
cording to our criteria was achieved for N> 4000). The
resulting Nmax was lower than for the case of f ¼ 0:1%,
although still much higher than in the naive approach.
Results for L=1 were similar to those of L=10,
namely increasing the coverage did not improve perform-
ance significantly in this case. The differences between
results for f ¼ 1% and 2% were rather small. The ‘effi-
ciency score’ in this case was lower (see Figure 7), and
was around 5, still offering a considerable saving
compared to the naive approach.
All former simulations considered the case of identify-

ing carriers of a heterozygous allele (AB). To study the
possibility of also identifying homozygous alternative
alleles (BB) via CS we simulated the following case: 1%
of the individuals were BB in addition to 1% which were
AB (this yields a vastly higher frequency of BB than is
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Figure 6. Nmax as a function of k for f ¼ 1% and 2%. The maximal number of individuals Nmax as a function of the number of pools. Similar to
Figure 3 but with a higher carrier frequency, f ¼ 1% and 2%. The number of individuals Nmax achieved decreases as we increase the carrier frequency,
but we are still able to treat a much larger sample size than the naive approach. For example, one can use 40 pools for L=100 and recover four
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expected to be encountered in practice, and was taken as
an extreme case to test the robustness of our reconstruc-
tion results). The results were marked as ‘1%+1%’ in
Figures 6 and 7. Our CS framework dealt with this
scenario in exactly the same way as the other AB cases,
although the results were, as expected, slightly worse than
those obtained for 2% heterozygous carriers.

The effect of noise

Figures 8 and 9 present the effects of three types of noise
in the specific case of f ¼ 1%. In both figures, the refer-
ence was the ‘standard’ performance of f ¼ 1%, which
appeared before in Figure 6, and included sampling
noise, read error (er ¼ 1%) and DP errors (s=0.05).
We considered the case of sampling error separately
from the other two sources, as its impact was different.

Sampling error. Figure 8 compares the ‘standard’ per-
formance to the case where an infinite number of reads
were available (although read error and DP errors were
still present). Differences between the cases appeared only
when the number of SNPs L was high, thus the number of
reads per person c was insufficient. In these cases Nmax was
reduced by a factor of 2 to 4 with respect to an infinite
coverage. When the number of SNPs L was small, and
coverage was high, there was no difference between the
‘standard’ performance and the infinite read case.

Read errors and DP errors. Figure 9 compares the
‘standard’ performance to two cases: one in which er=0
and another in which s= 0. In the absence of read errors,
Nmax may be twice as large as when er ¼ 1%. Read errors

made a significant effect on performance only when L was
large (100 or 500), since when coverage was high read
errors were compensated for [see Equation (9)]. In
all cases, we have studied the results were very robust
to DP errors, thus noise introduced by realistic pooling
protocols should be easily overcome by the CS
reconstruction.

Modifying the sensing matrix

In all simulations presented so far, we have considered
the case where each pool includes approximately N/2
individuals. It may be desirable to minimize the number
of individuals per pool (27), as this can lead to a faster and
cheaper preparation of each pool. Here, we shortly present
the possibility of modifying M into a sparse sensing
matrix, thus accommodating the requirement of having
few individuals per pool.

Figure 10 presents the results of using only
ffiffiffiffi
N
p

indi-
viduals in each pool, for the case f ¼ 1% (marked as
‘
ffiffiffiffi
N
p

, f ¼ 1’). For a small number of loci taken together
(L=1 or 10) the former dense Bernoulli(0.5) sensing
matrix achieved higher Nmax values. However, when the
number of loci was large (L=100 or 500) and for large
number of pools, it was preferable to use sparse pools of
size

ffiffiffiffi
N
p

. The same qualitative behavior was observed for
f ¼ 0:1% and 2%. The success of sparse matrices in re-
covering the true genotypes is not surprising given
theoretical and experimental evidence (53). Further
research is needed in order to determine the optimal
sparsity of the sensing matrix for a given set of
parameters.

Figure 7. Efficiency score of our approach for f ¼ 1% and 2%. Efficiency score of our approach. Similar to Figure 4 but with carrier frequency of
1% and 2%. As expected, efficiency is decreased as carrier frequency increases. We still reach up to 13� and 7� improvement over the naive
approach for carrier frequencies of 1% and 2%, respectively.
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Combining barcodes and CS

Barcodes may also be combined with CS so as to improve
efficiency and further reduce the number of required lanes.
The DNA in each pool (as opposed to the DNA of a

specific individual) may be tagged using a unique
barcode (see ‘Materials and Methods’ section). Hence, in
case we have nbar different barcodes available, we apply
nbar pools to a single lane, with the price being that each
pool contains only R/nbar reads. Figure 11 displays Nmax

Figure 8. Effect of sampling error. The dashed line represent results obtained in the limit where the number of reads goes to infinity, thus sampling
error is zero. The solid line represents the realistic scenario with the current number of reads used. Sampling error is seen to be a significant factor
when we treat many loci together in the same lane (L=100 or more), while for a few loci (L=10 or less) we already have enough coverage to make
sampling error negligible.

Figure 9. Effect of read errors and DP errors. The two dashed lines represent results obtained when assuming that reads are perfect and DP errors
is zero, respectively. The solid line represents a realistic scenario with a read error of 1% and DP errors of s=0.05. While read error appears to have
a significant factor in reducing Nmax, the effect of DP errors is negligible.
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as a function of the number of lanes, for different values of
nbar, and for different carrier frequencies.
The black line in each figure represents the ‘naı̈ve’

capacity, which is simply k� nbar. Incorporating even a
small number of barcodes into our CS framework
resulted in a dramatic increase in Nmax. For the same
problem parameters, but without using barcodes, we
could not recover the minimal possible number of indi-
viduals Nmax=1000 for f ¼ 0:1% and could not reach
more than Nmax=100 for f ¼ 1% and 2% (see Figures 3
and 6). Similarly to the non-barcodes case, the advantage
over the naive approach was most prominent for
f ¼ 0:1%, but was still significant for f ¼ 1% and 2%.
As the number of barcodes increased, the difference in
performance between different sparsity values f became
smaller. As long as the coverage was kept high, it was
still beneficial to increase the number of barcodes, as it
effectively increased linearly the number of lanes. At a
certain point, when many different barcodes were present
in a single lane, coverage dropped and sampling error
became significant, hence the advantage of adding more
barcodes began to diminish.

Experimental results. In Appendices 1–3, we present ap-
plications of the CS approach to three experimental data
sets. Appendices 1 and 2 compare between the perform-
ance of reconstruction which is based on experimental
data, and reconstruction in the fully simulated case. In
both examples, there is very good accordance between
the two cases. In Appendix 3, we show an application of

CS reconstruction to the experimental data of Erlich et al.
(27). We map this different, yet related, problem to a CS
approach, and achieve comparable reconstruction results
to Erlich et al. Together, these examples display the ap-
plicability and effectiveness of the CS approach to real-
world sequencing data.

DISCUSSION

We have presented a method for identifying rare alleles
and their carriers via CS-based group testing. The method
naturally deals with all possible scenarios of multiple
carriers and heterozygous or homozygous rare alleles.
Our results display the advantages of the approach over
the naive one-individual-per-lane scenario: it is particular-
ly useful for the case of a large number of individuals and
low carrier frequencies. We have also shown that our
method can benefit from the addition of barcodes for dif-
ferent pools (27), and still improve upon ‘standard’
barcoding.

As for practical aspects, our approach may also prove
to be advantageous over the naive approach. The overall
costs of an experiment stem from the procedures related to
sample preparation (e.g. PCR, performing gel extraction if
needed, etc.), and from direct sequencing costs. While our
approach requires an additional pooling step, both sample
preparation procedures and sequencing are then per-
formed over the pools and not on single specimens, as in
the naive approach. Hence, costs reduction in both steps is
proportional to the efficiency score defined in the ‘Results’
section.

Figure 10.
ffiffiffiffi
N
p

versus N/2 sensing matrix. The effect of applying pools of
ffiffiffiffi
N
p

or N/2 individuals (on average) for the case of f ¼ 1%. Overall, results
are comparable, yet each pooling design is preferable for different settings of pools and loci. The sparse (

ffiffiffiffi
N
p

) design is more beneficial for large
number of pools and longer target regions. The average coverage per individual on the right axis of each panel corresponds to the N/2 case.
The coverage in the

ffiffiffiffi
N
p

case is much larger since the total number of reads R is divided among a smaller number of individuals.
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We view our main contribution as outlining a generic
approach that puts together sequencing and CS for
solving the problem of identifying novel variations and
carrier screening of known SNPs. Following this
mapping, we may apply the vast amount of CS litera-
ture and benefit from any advancement in this rapidly
growing field. We believe this is a major advantage over
more ‘tailored’ approaches, e.g. (23,27), although these
methods may be superior to ours in specific cases.

Our method is simple in the sense that it applies CS in
the most straightforward fashion. We have used an
off-the-shelf CS solver and did not try to optimize any
CS related parameter for the different scenarios—all par-
ameters were kept fixed for all types of simulations, thus
optimizing reconstruction algorithms is likely to improve
our results. Moreover, the method’s performance as
detailed in the ‘Results’ section may be further
improved, since our formulation of the CS problem has
incorporated only part of the available information at
hand. Using additional information may reduce the
number of pools or total reads needed to achieve a
certain accuracy, as well as enable faster algorithms for
reconstruction, thus allowing us to deal with larger sample
sizes and larger regions.

The information that the input signal is trinary (0,1,2)
was considered only in the post-processing step after
running GPSR, although it may be incorporated into
the optimization procedure itself. Since most alleles are
approximately distributed according to the HW equilib-
rium, the frequency of 2’s, derived from the frequency of
1’s, is very low, and the input vector is most often
Boolean. Therefore, we could also modify the optimiza-
tion so as to ‘punish’ for deviations from this pattern.
Another possible direction may be to apply techniques
borrowed from the recent work on Bayesian CS (54,55)

and estimate the posterior probability of possible geno-
types. This may assist in further reducing the number of
pools needed for reconstruction.
In addition, we have treated each rare allele independ-

ently, although in case alleles originate from the same
genomic region, one could use linkage disequilibrium in-
formation and reconstruct haplotypes. For example, if
two individuals share a rare allele at position i, they are
also likely to share an allele, probably rare, at position
i+1. It would be a challenge to add these constraints
and enable the reconstruction of several adjacent loci
simultaneously. Another improvement may stem from
more accurate modeling of specific errors of sequencing
machines, including quality scores that provide an
estimate of error probability of each sequenced base
(49,56). Such careful modeling typically results in far
smaller error rates than the ones we have conservatively
used (�0:5� 1%.)
Our method is non-adaptive, in the sense that the

pooling strategy is designed in advance. A natural exten-
sion one might consider is to apply adaptive group testing,
namely to decide whether to use pool k, based on recon-
struction results of pools 1, . . . , k–1. In principle, such an
approach enables an adaptation of the number of samples
to unknown sparsity by simply generating pools one by
one, each time solving the CS problem and checking if we
get a sparse and robust solution. Once the solution stabil-
izes, we can stop our experiments, thus not ‘wasting’ un-
necessary lanes (it may also be beneficial to change the
pooling design of the next measurement and allow devi-
ations from the randomized construction we have shown,
once statistical information regarding the likely carriers is
starting to accumulate). This approach may be problem-
atic, however, since we typically deal with several SNPs
simultaneously. If the carriers of rare alleles are different
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Figure 11. Combining CS and barcodes. Results obtained by combining the CS approach with barcoding for L=1. Barcoding improves results by
allowing several pools to be tested on the same lane (although these lanes contain a smaller number of reads.) The effect of adding a large number of
barcodes is more pronounced for high minor-allele frequency. For example, at f ¼ 2% and with 7 lanes, we can treat roughly 300 individuals with 10
barcodes, but around 2500 individuals with 200 barcodes. The increase in power is sub-linear, as is seen by the fact that when we add more barcodes,
the performance becomes closer to that of the naive approach (shown in black) which increases linearly with the number of lanes. Still, only at a very
high number of barcodes the naive approach can perform as well as the CS design.
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for the relevant SNPs, performing such an adaptive recon-
struction is not straightforward as the optimal pooling
strategy would be different across loci.
Our approach is most useful when one wishes to

sequence a relatively small region over a large number
of individuals, as opposed to the naive approach that
aims at sequencing large regions in a single individual.
We envision that this scenario will be of great importance,
as many genes known to contribute to certain diseases will
be sequenced in large populations. While the scope of our
approach, i.e. the size of the targeted region, may be
limited, the rapid increase in sequencing capacity of a
single lane may further increase the region size (and popu-
lation size) for which our approach is beneficial.
Our method does not require any prior knowledge

about rare allele frequency, which is the case when con-
sidering novel variants, or when screening a new popula-
tion for known SNPs. The only relevant question is
whether a certain number of pools is sufficient to
provide accurate reconstruction. Hence, one needs to
perform an ad hoc estimate of allele frequency, which
may be approximated by averaging over allele frequencies
found in all pools. Based on this estimate, one can check
whether the relevant number of individuals is higher or
lower than Nmax for the current number of pools and
estimated allele frequency, and add pools if necessary.
Our simulations also indicate that while an insufficient
number of pools may lead to incorrect reconstruction, in
such cases we still correctly report allele frequency. Also,
in such cases reconstruction is of worse quality thus our
algorithm can detect and report the need for more pools
(data not shown).
The drawbacks of our method stem from the limitations

of CS and sequencing technologies. First, in case carrier
frequency is high enough, the sparsity assumption at the
heart of the CS theory breaks down, and it may be prob-
lematic for CS to reconstruct the signal. The highest fre-
quency possible for CS to perform well in this application
was not determined, but one should expect a certain fre-
quency above which it is no longer beneficial to apply CS
and the naive one-individual-per-lane approach is prefer-
able. The simulations we have performed estimate this
frequency to be over 5% in most cases, thus taking
effect only for the case of common alleles. In general, it
is reasonable to assume that unknown variants typically
have low frequencies, usually <5% (for otherwise they
would have been identified already). It is, therefore,
likely that our approach would be well suited for identify-
ing novel variants.
Another possible difficulty in our approach is related to

the issue of randomness of the sensing matrix M. This
randomness may be discarded by simply fixing a certain
instance of the sensing matrix, although randomness in
this case may be viewed as an advantage of CS—almost
any (random) matrix would enable reconstruction, as
opposed to intricate pooling schemes which need to be
carefully designed.
The last drawback we should mention is related to the

fact that each pool contains approximately half the indi-
viduals in the group. This may be problematic in cases
where pooling preparation might be slow and costly,

and one needs to minimize the number of individuals in
each pool (27). In this case, it may be interesting to apply a
sparser pooling design. As shown in the ‘Results’ section
there are scenarios in which it is advantageous to assign
only

ffiffiffiffi
N
p

individuals to a pool. Therefore, one needs to
optimize the pool design together with other parameters,
e.g. number of loci and lanes considered. This issue
remains for future study.

While we have tried to model the different sources of
error encountered in next generation-pooled sequencing, a
complete validation of the approach still requires large
scale pooled CS experiments. As far as we know such an
experiment has not been performed yet. Therefore, in the
appendices we present analysis of three experimental data
sets, which capture the main aspects of the approach.
Using the data of Out et al. we directly test the linearity
assumption, which is at the heart of the CS approach, and
show that performance is similar to the predicted perform-
ance on simulated mixtures. In a second example, reads
from the Pilot 3 study of the 1000 Genomes Project are
used to simulate pools by randomly sampling reads col-
lected when sequencing each individual. We show that
performance of the CS approach using these experimental
reads is similar to performance obtained using simulated
reads sampled by our model. In a third example, the CS
method is applied to the data of Erlich et al., showing an
implementation of the CS approach to a large scale,
pooled and barcoded experiment.

Finally, while we have demonstrated the benefits of
CS-based group testing approach for genotyping, any
genetic or epigenetic variant is amenable to our
approach, as long as it can be detected by next generation
sequencing technology and is rare in the population of
interest. For example, copy number variations (CNVs),
important for studying both normal population variations
and alterations occurring in cancerous tissues, provide a
natural extension to our framework. In this case, the
number of reads serves as a proxy to the copy number
at a given locus, and the vector to be reconstructed
contains the (integer) copy number levels of each individ-
ual, rather than their genotypes. Another example is given
by rare translocations, often present in various tumor
types—where an evidence for a translocation may be
provided by a read whose head is mapped to one
genomic region and whose tail is mapped to another
distal region (or by two paired-end reads, each originating
from a different genomic region). Carriers of a particular
rare translocation may be discovered using this approach.
The extension of our method to these and perhaps other
novel applications provides an exciting research direction
we plan to pursue in the future.
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APPENDIX 1

Carrier identification based on pooled
experimental data

We applied our approach to the data described by Out
et al. (38). Briefly, a region of �5.7 kb of human chromo-
some 1 containing the MUTYH gene, was amplified and
sequenced (using Sanger sequencing) in each of 88 breast
cancer patients. In addition, the authors created a single
pool consisting of equal amounts of DNA from these
88 individuals, and performed targeted sequencing by
the Illumina GAI. Using these two methods, the authors
detected a set of about 25 heterozygous SNPs present
in the 88 individuals. Carrier identity for each of the
SNPs was determined by the Sanger sequencing data,
which served as ‘ground truth’ for the genotypes of each
individual. Only 9 SNPs out of the 25 were present at a
carrier frequency below 4%: 5 SNPs with a single carrier

among the 88 individuals, 3 SNPs with 2 carriers, and a
single SNP with 3 carriers. The rest of the SNPs tested had
higher carrier rate, thus were discarded from our analysis.
Figure A1 compares the estimated allele frequencies via
next generation sequencing to the Sanger-based
frequencies. The former frequencies were estimated from
sequencing the pool as f= rrare/rtotal, where rrare and rtotal
were the number of reads from the rare allele and the total
number of reads from the relevant SNP, respectively. For
most SNPs, sequencing the pools provides a good estimate
of rare alleles’ frequencies.

The experimental data at hand consists of sequencing
many SNPs over a single pool. We have used this data in a
bootstrap approach to simulate many different in silico
pools required for our CS framework. The simulation
was performed by first grouping the SNPs according to
their carrier rate within the 88 individuals. We then con-
sidered each such group of equal rate SNPs as if it repre-
sented measuring a single SNP over several pools. For
example, in order to simulate a single carrier SNP, we
considered the five single carrier SNPs of Out et al. as if
they originated from five different pools targeting a single
simulated SNP. Hence, in order to simulate a pool, which
happens to contains a single carrier, we randomly sampled
one of the five single carrier SNPs and used its measured
value f for the allele frequency in that pool.

The CS simulation was performed as follows: we
created a genotype vector x of length 2� 88=176,
which contained either 1, 2 or 3 non-zero entries, corres-
ponding to the carriers. We then selected a random
sensing matrix M of k rows and 176 columns, which con-
tained exactly 88 non-zero entries in each row, represent-
ing the 88 individuals present in each pool (notice this is
slightly different from the Bernoulli matrix described in
the main text, which would contain 88 individuals on
average; however, this has no practical importance).
Hence, by dividing each row of M by 176, the measure-
ments y=Mx correspond to the frequencies of the rare
allele in the k ‘pools’. Ideally, these values should be 0,1,2

Figure A1. Allele frequency—Illumina versus ground truth. Frequency
of rare alleles in 88 individuals for nine SNPs as sequenced by (38).
These frequencies are compared to their expected value based on
Sanger sequencing each of these 88 individuals. Some of the five
single-carrier-SNPs have very similar measured values, and are almost
overlapping in the graph.
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or 3 divided by 176, but we replaced them by sampling the
relevant experimental values of f. For example, in case the
i-th pool contained two carriers, i.e. yideali ¼ 2=176, we
randomly selected one of the three SNPs which had two
carriers, and set the measurement to be ymeasured

i ¼ f of
that specific SNP. Similarly, in case the pool contained a
single carrier, we randomly selected the value f of one of
the five relevant SNPs, while if the pool consisted of three
carriers the measurements were based on a single SNP
(pools which did not include any carrier were taken as
f=0).

For a given genotype vector, different pools may have
different numbers of carriers. Thus, for example, when x
contains three carriers, yideali may have four ‘levels’ corres-
ponding to whether 0,1,2 or 3 carriers participated in the
actual pool. Therefore, the bootstrap simulation may use
values of f from different SNPs for different pools, based
on the carrier frequencies observed in the pool. All nine
values of f, corresponding to the nine different SNPs, may
potentially enter the simulation. Finally, we used CS to
reconstruct the genotype vector x based on this ‘experi-
mental’ case, and compared it to the ‘true’ genotype vector
obtained by Sanger sequencing.

To compare reconstruction performance based on ‘ex-
perimental’ data to reconstruction based on the model
suggested in the main text, we also simulated this experi-
mental setting of 176 individuals. For each genotype

vector x to be reconstructed, we performed an analogous
simulation, using exactly the same x, sensing matrix M
and values of rtotal. To apply our model as detailed in
the Section ‘Mathematical Formulation’, we set the read
errors as er ¼ 1% and DP errors (� ¼ 5%). For each pool,
we considered the relevant value of rtotal as the expected
number of reads, and sampled the number of reads ac-
cording to �(rtotal,1). We then sampled the reads accord-
ing to a Binomial distribution.
Figure A2 presents the percentage of zero-error re-

constructions out of 1000 trials for the ‘experimental’
and simulated cases (black and red lines, respectively).
Figure A2a–c correspond to different carrier rates. There
is very good similarity between the ‘experimental’ data
and our simulations, especially in the case of one and
two carriers (Figure A2a–b, respectively.) However,
there are rather large differences in the case of three
carriers. The latter case is, in part, based on a single
SNP measurement in the ‘experimental’ data, which
happened to be noisy (see Figure A2). To check whether
these results originate from this single noisy measurement,
we generated a different sensing matrix M, containing no
more than two carriers in each pool, by randomly
eliminating one of the three carriers from the pool,
whenever a pool contained all the three. Hence, we tried
to reconstruct genotypes in the case of three carriers, via
‘pools’ each containing two carriers at most. As a result
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Figure A2. Carrier identification in an experimental mixture: ‘experimental data’ versus simulated. The percentage of zero-error reconstructions out
of 1000 trials, as a function of the number of pools, for reconstruction based on (38) (black) and simulated data (red). (a–c) Correspond to 1,2 and
3 carriers, respectively. (d) corresponds to reconstructing three carriers, based on pools which contain two carrier at most. The dashed line in each
panel corresponds to our zero-error 95% threshold.
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the differences between ‘experimental’ and simulated data
were much smaller (Figure A2d), thus indicating that
indeed the single noisy experimental measurement of
three carriers caused most of the differences.
To conclude, although the number of SNPs covered by

Out et al. is rather limited, it does show that the linearity
assumption, which is at the heart of CS holds, i.e. the
measurements’ values are approximately linear in the
number of rare alleles in the pool. Our simulations are
in good agreement with reconstruction based on actual
read counts. Our predictions as to the quality of recon-
struction and our estimate of the number of pools required
to reach the level 95% are rather accurate. Therefore,
there is reason to believe that our model and our predic-
tions regarding larger cohorts of individuals, presented in
the article, would also prove to be as accurate.

APPENDIX 2

Decoding mixtures based on the 1000 genomes project

We applied the CS approach to a subset of the Pilot 3 data
from the 1000 Genomes Project (www.1000genomes.org),
in which exons of roughly 1000 genes were resequenced
with high coverage in a few hundred individuals. The fol-
lowing sections present the data, the CS setting, and the
results of carrier detection based on this experimental data.

Data set. The Pilot 3 data set, as of May 2010, consists of
sequences of approximately 700 individuals, from which
we used the 364 individuals sequenced by an Illumina
machine. Using the Genome Analysis toolkit (57), we
calculated the number of rare-allele reads and the total
number of reads for each individual, for each of the
3489 loci listed in the Northern and Western European
ancestry SNP list (CEU variant call format file).
Individuals for which the total number of reads for a

certain SNP was lower than 40, were excluded from the
analysis of that specific SNP. Minor allele frequencies
below 0.1 were labeled as reference homozygous (AA),
frequencies between 0.35 and 0.85 were labeled as hetero-
zygous (AB), and frequencies above 0.85 were taken as
rare homozygous (BB). Cases in which minor allele fre-
quency was in the range 0.1–0.35 were considered as am-
biguous and were excluded. We then calculated carrier
frequency for each SNP, and analyzed 633 SNPs whose
carrier frequency was lower or equal than 2%. Coverage
was different for different people, and the number of in-
dividuals per SNP varied across the 633 SNPs, with mean
and SD of 185 and 55 individuals per SNP, respectively.
Twenty of the SNPs included rare heterozygous (BB)
carriers.

The CS Setting. The CS approach was independently
applied to each of the 633 SNPs. The genotype vector x
to be reconstructed was determined according to the
above classification, and the sensing matrix M was
randomly selected as in the main text. We simulated the
pooling process and the resulting measurements vector
according to the following procedure; For each pool, we

set the total number of reads for a given SNP to
rtotal= c� n, where n is the number of individuals in the
pool, and c being the coverage. Each read was sampled by
randomly selecting one of the n individuals, and then
drawing uniformly one of the reads covering the relevant
SNP for this individual in the 1000 Genomes data set. This
sampling procedure was repeated rtotal times to obtain
rtotal reads and the measurement was taken as f= rrare/
rtotal, where rrare is the number of reads from the rare
allele. The same procedure was repeated for different
values of coverage c and for a variable number of pools.

Since read error is unknown for this data set, we applied
the modified reconstruction algorithm that appears in
Appendix 4. This algorithm simultaneously reconstructs
the genotype and infers the read error, without prior
knowledge of the true error by just assuming that it is
constant across different pools, i.e. lanes.

To compare reconstruction performance based on ‘ex-
perimental’ data to reconstruction based on our statistical
model, we also simulated measurements according to
our statistical model (‘Methods’ section). For each SNP,
we performed an analogous simulation, using exactly the
same sensing matrix M and value of rtotal. We applied our
model as detailed in the Section ‘Mathematical
Formulation’, with read error set er ¼ 1% and DP error
set � ¼ 5%. We considered the relevant value of rtotal as
the expected number of reads, and sampled the number of
reads according to �(rtotal,1). We then sampled the reads
according to a Binomial distribution.

Carrier detection. Figure A3 presents the number of
zero-error reconstructions out of the 633 SNPs as a
function of the number of pools. Figure A3a–d corres-
pond to different values of the coverage c. The black
and red lines correspond to reconstruction based on ex-
perimental reads (‘exp’-standard) and simulated reads, re-
spectively. The performance according to ‘exp’-standard
was in good accordance with the fully simulated model:
95% of the SNPs are reconstructed with zero errors, when
considering 100 pools and with coverage c=80, as
opposed to 100% of the SNPs in the completely simulated
case. However, when considering lower coverage and
number of pools there were larger differences between re-
construction results, and performance for the experimen-
tal reads was poorer.

A possible factor contributing to these differences is
that data for the 1000 Genomes Project were generated
by sequencing on several Illumina machines and at differ-
ent laboratories, which may lead to different levels of read
errors for different individuals. This setting is different
from the one suggested by our reconstruction model,
which assumes a constant read error for all pools (see
Appendix 4). Hence in order to overcome this variability,
we estimated the read error for each individual separately,
in the following way: for each individual i, we identified
the SNPs for which it was classified as reference homozy-
gous (AA) out of all 3489 SNPs, and estimated the read
error for that sample er(i) as the total number of B reads
for those SNPs divided by their total number of reads. We
assume that SNP j in individual i had rrare(i,j) reads from
the rare allele when sequenced in the 1000 Genomes
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Project, and its total number of reads for SNP j was
rtotal(i,j). Then when sampling the reads for SNP j in indi-
vidual i in our resampling-based simulated pools, the
probability of selecting a rare allele was taken as
rrare(i,j)/rtotal(i,j)�er(i), instead of the ‘standard’ probabil-
ity rrare(i,j)/rtotal(i,j). The same value er(i) was subtracted
from all SNPs of individual i. The rest of the settings were
the same as in ‘exp’-standard. Reconstruction results using
these ‘adjusted’ read counts appear as the green line in
Figure A3, and show better correspondence to the
simulated results. For example, in the case of c=80 and
100 pools, >99% of the SNPs are reconstructed without
errors.

We conclude that our simulations are in very good ac-
cordance with the simulations based on experimental
reads from the 1000 Genome Project, which may substan-
tiate our model. These results are based on simulating
pools, and not on real experimental pools, while the
previous Appendix described small-scale results based on
a true experimental pool. Together, the two datasets high-
light the great potential of the approach—one may be able
to identify carriers of hundreds of SNPs using only a very
small number of pools.

APPENDIX 3

Decoding a library of microRNAs

Our CS framework can also be applied to a different, yet
related, decoding problem described in (27). The aim in

this problem was to determine the sequences of a large
number of clones via group testing.
The experimental data consisted of N=40320 wells,

each containing a single shRNA clone (targeting
Arabidopsis genes), whose sequence we wish to determine.
The wells were grouped into pools based on a Chinese
Remainder Theorem design, where each pool consisted
of samples from �100 wells, thus providing a rather
sparse pooling design which is similar to the

ffiffiffiffi
N
p

design
we have examined. Each pool was then marked by one of
nbar=384 different barcodes, thus allowing up to 384 dif-
ferent pools to be applied to the same lane. Five different
lanes of an Illumina GAII machine were used, resulting in
kffi5� 384 = 1920 pools in total (the actual number of
pools was slightly smaller due to the Chinese Remainder
Theorem setting). The total number of sequence reads
from those 5 lanes was 28 million. As a first pre-processing
step, we determined the set of unique sequences appearing
in the wells by marking u=27276 unique sequences si,
i=1, . . . , 27 276, of length 30 bp each, which had more
than 10 reads in at least one of the pools (this number
is lower than the number of wells, which probably means
that the same sequence may be present in more than
one well): the goal was to assign to each well one of the
sequences si, thus we wish to reconstruct an N� u sparse
binary matrix providing the assignment. Ideally, each
row in this matrix should contain a single non-zero entry.
To solve this problem using the compressed

se(que)nsing approach, we considered each of the u se-
quences independently. We essentially reduce the task to
a SNP detection problem, where the reconstructed vector
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Figure A3. Number of SNPs correctly reconstructed based on the 1000 Genomes Project data. Number of SNPs with zero-error reconstructions as a
function of the number of pools. Each panel corresponds to a different coverage level. The black line corresponds to the standard reconstruction
based on generating pools from the 1000 Genomes Project’s actual reads, and the red line corresponds to reconstruction based on sampling reads
according to our statistical model. The green line corresponds generating pools by adjusting the 1000 Genomes Project’s actual reads to account for
different read errors for each individual (see text in Appendix 2).
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xi is a binary vector of dimension N=40320, which is
non-zero for those wells that contain the sequence si.
Thus, the sparsity condition for xi in this case is
exemplified by the fact that each unique sequence is con-
tained in only one, or a few wells (by design the purpose
was to assign a different sequence to each well thus
ensuring sparsity s=1, yet it is often the case that a few
wells contain the same sequence.) The sensing matrix M in
this case is a 1920� 40 320 sparse binary matrix indicating
which wells participate in each pool, and is the same for all
different sequences. The measurements vector yi is a
binary vector of length k=1920, indicating whether si
was observed in each measurement. Hence, using this rep-
resentation the decoding task in (27) is similar to the SNP
detection problem, with three noticeable differences: first,
the sensing matrix M is a specific structured and determin-
istic matrix, as opposed to our random sensing matrices.
Second, the measurement vector yi is binary, while in our
rare-allele detection task y contains frequencies of the rare
allele in the pool. Lastly, in this task we have to solve
many (rather than one) CS reconstruction problem, all
sharing the same sensing matrix M. Given these differ-
ences our CS approach was completely robust to these
modifications, and performed comparably well to the
approach in (27) as described below.
Using our CS approach, we carried u=27276 inde-

pendent reconstructions for each of the sequences
present in the data. In each reconstruction, we have
solved the standard CS problem with the GPSR equiva-
lent formulation

x�i ¼ argmin
x

jjMxi � yijj2+�jjxijj1 ðA1Þ

where each of the 27 276 sequences provides a different
measurement vector yi (and thus usually different
solution xi.) The value of t was set as described in the
‘Results’ section.
Aggregating the results for all sequences, we obtained

potential assignments for 34 623 out of the 42 320 wells,
while the rest of the wells were not predicted to contain
any of the sequences, i.e. their corresponding entry in the

vector xi was zero for all reconstruction problems. Out of
the wells with potential assignments, 25 991 were ‘unam-
biguous’, i.e. predicted to contain a single sequence. To
validate the sequence-to-well assignments, the sequences
of 2760 randomly selected wells were determined inde-
pendently using a conventional sequencing experiment.
In 94% of these cases, our CS approach correctly
matched the sequence in each well. These results are com-
parable to those reported in (27). Erlich et al. have also
applied several clever heuristics, which filtered and
weighed lower quality reads, thus achieving better results
than ours. We have not used these heuristics, as our goal
was merely to examine the robustness of our CS approach
in this problem, applied as a ‘black-box’ solution.

APPENDIX 4

Coping with unknown read error

We assume that the read error er is unknown to the re-
searcher, but is constant across all lanes. One can intro-
duce a slight modification to our procedure, which enables
the learning of er from our pooling data. We replace z in
Equation (7) by the convolution:

z � er � z+er � 2zer ðA2Þ

The additive factor er�2zer is different for different
values of z, but its dominant part is er. We can approximate
it by xN+1 � er � 2 �zer, obtained from averaging the term
2zer over all z values (i.e. �z is the mean value of the vector
z). We can now reformulate the CS problem by adding one
extra variable. Specifically, the unknown vector x is
replaced by x0 = (x,xN+1) and Equation (7) is replaced by

x0� ¼ argmin
x0
jjx0jj1 s:t: jj

1

2
M̂0x0 �

1

r
zjj2 	 � ðA3Þ

where M 0 is built from M by adding a constant column to
its right as its N+1’s column with all its values set to �1.
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