
Biological screens from linear codes: theory and
tools
Yaniv Erlich ∗, Anna Gilbert †, Hung Ngo ‡, Atri Rudra ‡ , Nicolas Thierry-Mieg §, Mary Wootters ¶, Dina Zielinski ∗ , and Or
Zuk ‖

∗New York Genome Center, 101 Avenue of Americas, New York, NY 10013,†Department of Mathematics, University of Michigan, 530 S. Church Street, Ann Arbor,
MI 48109,‡Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260,§TIMC-IMAG/BCM, UMR 5525 CNRS / UJF-Grenoble 1,
Grenoble, F-38041, FRANCE,¶Carnegie Mellon University, School of Computer Science, 5000 Forbes Avenue, Pittsburgh, PA 15213, and ‖Department of Statistics,
The Hebrew University, Mt. Scopus, Jerusalem, 91905, ISRAEL

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Molecular biology increasingly relies on large screens where enor-
mous numbers of specimens are systematically assayed in the
search for a particular, rare outcome. These screens, or combi-
natorial pooling designs, include the systematic testing of small
molecules for potential drugs and testing the association between
genetic variation and a phenotype of interest. While these screens
are “hypothesis-free,” they can be wasteful. We articulate in
precise mathematical ways the type of structures necessary or
useful in pooling designs so as to eliminate waste, to provide
light weight, flexible, and modular designs. We show that Reed-
Solomon codes, and more generally linear codes, satisfy all of
these mathematical properties. We establish fresh connections
between biologically relevant and combinatorial properties of er-
ror correcting codes and thus demonstrate how to construct prac-
tical pooling designs with rigorous guarantees for large screens.

multiplexed assays | combinatorial group testing | compressed sensing |
experimental designs | linear error-correcting codes

Significance
We provide a mathematical formulation of biologically relevant
structures in combinatorial pooling designs. Before this work, biolo-
gists had not articulated in precise ways the type of structures neces-
sary or useful in pooling designs. We also show that Reed-Solomon
codes, and more generally linear codes, satisfy all of these mathemat-
ical properties. Finally, we show that while many of these properties
were not considered before in the context of group testing, they have
been studied in coding theory and, thus, we establish fresh connec-
tions between biologically relevant and combinatorial properties of
error correcting codes. We show how to construct practical, relevant
pooling designs with rigorous guarantees.

Introduction
The field of molecular biology increasingly relies on large screens
where overwhelming numbers of specimens are systematically as-
sayed in the search for a particular outcome. These screens can come
in various forms: systematic testing of tens of thousands of small
molecules in a search for potential drugs; interfering with the activity
of every gene in the genome to elucidate the organization of genetic
networks that underly cancerous processes using RNAi; determining
the ability of one protein to bind to every other protein in the genome
in yeast two-hybrid systems; and testing the association between vir-
tually every possible genetic variation in the genome and some phe-
notype of interest such as diabetes or heart diseases. One advantage
of these screens is that they are considered “hypothesis-free,” letting
the data reveal new and unexpected outcomes that are hard to deduce
from current biological knowledge. The downside is that screens can
be quite resource and energy consuming. In many cases, screens
“waste” an overwhelming number of assays that deliver negative and
uninteresting results to find the scarce positive findings.

In the last few years, we and others have independently demon-
strated screens in various biological domains that are based on combi-

natorial pooling (see the Table in the supplementary material). These
experiments have two basic commonalities. First, instead of inde-
pendently assaying each one of the specimens, the experiments begin
with grouping the specimens into pools using specific mathematical
rules and then assaying the pools. This procedure dramatically re-
duces the costs of the experiments as the number of pools is much
smaller than the number of the original specimens. Second, in con-
trast with naive pooling in which a group of specimens participate
in exactly one pool, each specimen in combinatorial pooling partic-
ipates in a series of unique pools. Thus, it is possible to assign a
unique result to each specimen by comparing the pattern of the re-
sults to the pooling design, as long as the number of positive findings
is relatively small.

Most of the experiments above exploited non-adaptive group
testing or compressed sensing to design the pooling pattern. These
two closely related mathematical domains deal with construction of
efficient designs that reduce the number of pools while preserving
the ability to assign unique results to each item. Under these frame-
works, biological screens are cast as a system of (linear) equations
with n variables, each variable corresponds to an item in the screen.
The items can come in different forms: small molecules in chem-
ical screens, different hairpins in RNAi screens, a library of preys
in yeast two-hybrid screens, or human individuals in genetic studies.
The aim of the screen is to uncover x, a vector of length n, whose
ith position denotes the biological property of item i. For example,
in a small molecule screen, x can be either 1 or 0, where 1 denotes
an active compound and 0 denotes an inactive compound. The ex-
perimenter does not observe x directly. Rather, she employs t assays
into which the n items have been pooled and observes y, a vector of
length t whose jth position denotes the assay results for jth assay.
For example, in a small molecule screen, the entries of y can denote
the fraction of surviving cells in the presence of the compound, or
y can be a vector with entries that are either 0 or 1, where 0 means
that no cell survives while 1 captures the survival of some of the cells
in the assay. Finally, we can express the pooling design by M , a
matrix with t rows and n columns whose entries are non-negative
numbers. The entry Mij = r means that r-units (micrograms, mi-
croliters, moles, or some arbitrary measure) of item j are assayed in
the ith reaction. With this representation, trivial screens (no pooling)
simply correspond to the n×n identity matrix; each items is assayed

Reserved for Publication Footnotes

www.pnas.org/cgi/doi/10.1073/pnas.0709640104 PNAS Issue Date Volume Issue Number 1–16

in exactly one distinct reaction. In general, the theory of group testing
and compressed sensing formulate the experiment with the following
equation:

y = Mx+ ε

where ε denotes noise. In group testing, the assay results (y), the
property of the items (x), and the entries of the pooling matrixM are
either 0 or 1 (but see [7]). In addition, the product Mx is computed
using Boolean arithmetic: the result of an assay is positive if and only
if at least one sample in the pool is positive. In compressed sensing,
the entries of the matrix M are real numbers and the product Mx is
computed using standard real-valued arithmetic.

Unfortunately, the theoretical work in group testing and com-
pressed sensing does not address many practical design challenges
biologists face in using such pooling strategies. Significant progress
has been made in developing pooling designs with a minimal num-
ber of assays but with scant attention to whether these designs can be
implemented in practice. Here, we map the current implementation
gaps, propose a mathematical framework based on coding theory that
addresses most of these barriers, and provide a series of supplemen-
tal material where experimentalists with no mathematical knowledge
in coding theory and minimal equipment can conduct pooling exper-
iments. Zielinski, et al. [21] provide a web-based tool for gener-
ating these designs and a table-based pooling platform (available at
http://ipipet.teamerlich.org/home).

Challenges and Results
Features of practical pooling designs. In the last few years, we have
conducted dozens of large scale pooled screens in various biological
domains that highlight common features and issues in implementing
pooled experiments.
Well-balanced designs. We noticed that the most implementation-
robust designs are well-balanced designs, where each item is pooled
exactly the same number of times and all the assays have (close to) an
identical number of items. These designs consume the same amount
of material from all items, allowing straight forward planning of the
experiment and reducing the risk that an item will run out during
pooling. It also ensures that each item is treated equally. Assays with
identical number of items are also highly beneficial. They produce
more consistent results that mitigate the effect of diluting the spec-
imens. Another by-product is that well balanced designs allow fast
quality assessment of the pooling procedure before starting the ex-
pensive screening part. Large deviations in the pools volumes or in
the residual specimen material can be easily detected by the naked
eye and serve as an indicator that there was a potential flaw in con-
structing the pools.
Maximal utilization of biological kits. A large number of biologi-
cal kits are sold in batches of 96 assays to fit the common microtiter
plates. In many realistic scenarios there are minimal cost differences
between a design with 50 assays or 96 assays, but a significant differ-
ence between a design with 96 pools and 97 pools. Thus, it is desir-
able to find a pooling design with a multiple of 96 assays. Of course,
one can construct a random pooling design to achieve this aim, but
then the design will not be well-balanced. Thierry-Mieg [17] pro-
posed the Shifted Transversal Design (STD) that is a well-balanced
and was widely used in biological experiments. Unfortunately, STD
cannot fully utilize a 96 well plate, as it produces numbers of pools
that are a small multiple of a prime number (smaller than the prime
itself).

Light Weight. Most theoretical pooling designs do not take into
account the weight of the design, that is, the number of 1s in M . The
weight is a critical feature for pooled experiments. Heavy weight
means that each specimen is sampled more times, which consumes
more material. In theory, of course, we can take a smaller amount
of material in each specimen to mitigate this problem. But in re-

ality, conventional liquid handling robots cannot accurately aspirate
and dispense small quantities limiting the possible weight. In ad-
dition, heavy weight designs are more laborious to implement and
have higher overheads that contributes to the costs of the pooling
procedure (robotic time, tips, or manual labour). Finally, large row
weights further dilute the original specimens which can reduce the
reliability of the assay. In our experience and survey of the litera-
ture, tractable pooling designs rarely exceeds column weight of 10 in
many cases.
Modularity. When the number of input specimens is large, a pool-
ing experiment is typically divided into batches of distinct blocks
of specimens. In each batch, the experimentalist starts from scratch
and constructs the pools with the new specimens. This approach is
more robust because a sporadic failure of the liquid handling sys-
tem affects only a limited number of specimens rather than the entire
experiment. In addition, it limits the amount of liquid evaporation
from the constructed pools by minimizing the time it takes to finish
to construct a pool. One desired property is that every batch will
have a good performance and that the experimentalist will be able
pool distinct batches together into a ‘mega-design’ without too much
loss of performance. This will allow maximal flexibility in carry-
ing out the multiple experiments. For instance, the experimenter can
start with a conservative pilot experiment on one batch. Based on the
results, she can decide whether to take a more aggressive approach
and pool multiple batches together into a mega design or to retain the
more conservative approach. Another advantage of modular designs
stems from the fact that the constructed pools will typically be used
many times in various conditions (e.g. using different bait proteins
in yeast two-hybrid experiments), with varying numbers of positive
items. A mega design can be sufficient in most cases, but decoding
may fail when the number of positives is unusually high. However,
when this happens one can redo the experiment using the underlying
sub-designs, which have more smaller pools and will thus success-
fully identify the positives.
Average performance. Substantial parts of the theory of group test-
ing address the worst-case performance of a pooling design, called
the matrix disjunctness. With this property, it is very easy to de-
rive the minimal number of positive items that can be decoded after
pooling given a certain number of errors. In practice, however, the
worst-case performance has low utility for experimentalists. What
we really need is a design that performs well on average and to know
the expected rather than worst case performance of the design.
Robustness to Noise. Much of the classical group testing theory deals
with the case of perfect measurements; i.e., we observe y = Mx. In
practice, almost all measurements performed by experimentalists are
noisy. We therefore need pooling designs and reconstruction algo-
rithms which provide good average performance in a noisy setting.
Up to now, these last two points have only been adressed by simula-
tion [18] .

Reed-Solomon based pooling designs. We found a pooling design
based on Reed-Solomon (RS) error correcting codes that dramati-
cally reduces the number of pools compared to the pooling designs
widely used in biological experiments while addressing the practi-
cal properties mentioned above. In coding theory, a code is a set of
vectors that differ pairwise in a large number of places. RS codes
are linear codes, based on polynomials over finite fields. For the
reader’s convenience, we include an in-depth introduction to these
topics in the supplementary material, but for us, the important prop-
erty of Reed-Solomon codes are the pooling design they induce.

Designs based on RS codes have been used in biological group
testing since the 1960’s, when they were proposed by Kautz and Sin-
gleton [11]. However, existing work has not addressed the challenges
above; the contribution of this work is showing how to use RS designs
to address the practical needs of modern biology.

Below, we describe the construction of a RS design from the
practitioner’s perspective; the supplementary material contains a

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

more theoretical approach. We build the matrix M by stacking
smaller submatrices, called layers on top of each other. The basic
construction starts by selecting three integers: q, the number of pools
in each layer, m, the number of layers, and k, the maximum de-
gree of the polynomials we construct. We refer to such codes as
[m, k,m − k + 1]q-RS codes. There are three constraints on these
parameters, imposed by the theory. First, the number of specimens,
n, must be at most qk; in practice, we will choose k to be the small-
est integer so that this is true. Second, q must be either a prime or a
prime power (e.g., 7, or 24 = 16). For practical reasons discussed
later, we are interested specifically in the case when q = 16. Third,
both k and m must be smaller or equal to q. The pooling matrix M
has t = qm rows (pools), and is divided into m submatrices (layers)
of equal size q × n. We will number the layers 0, 1, . . . ,m− 1, and
we will number the rows within each layer 0, 1, . . . , q − 1.

M =

la
ye
rs

q

specimens

0

1

2

3

4

5

U
2
+
U

+
1

U
2
+
U

+
2

U
2
+
U

+
3

U
2
+
U

+
4

U
2
+
U

+
5

Pv(U)
Associated
polynomial

7 4 5 2 3Pv(2) Evaluation

27
3

27
4

27
5

27
6

27
7v Specimen #

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Fig. 1. Construction of the Reed-Solomon pooling matrix with q = 16 and
m = 6, and n = 288. The columns corresponds to specimens and are indexed
by polynomials over F16, and the rows are grouped into 6 layers. We highlight
the assignment of the specimen v = 275 in layer 2. As described in the text, we
consider P275 = U2 + U + 3, and evaluate P275(2) = 5.

Next, we represent each specimen number as a polynomial of de-
gree k−1. We order the polynomials lexicographically. For example,
if k = 3, and q = 16, then the first specimen is represented by the
polynomial P0(U) = 0U2+0U+0 = 0, the second specimen is rep-
resented by the polynomial P1(U) = 0U2 + 0U + 1 = 1, the 275th
specimen is represented by P275(U) = U2 +U+3, and the 276th by
P276(U) = U2 + U + 4. Notice that this polynomial representation
depends on q: if q = 7, then P275(U) = 5U2 + 4U + 2.

Each specimen will be assigned to one pool in each layer. To find
the pooling assignment of the ith specimen in the jth layer, we will
evaluate the polynomial Pi at position j, Pi(j), over the finite field
of size q, denoted Fq . For example, if q = 7, i = 275, and j = 2,
then

P275(2) = 5 · 22 + 4 · 2 + 3 mod 7 = 3.

Now, the i column in the j layer is a binary vector of length q, whose
`-th position is 1 if Pi(j) = ` and 0 otherwise. Thus the ith sam-
ple will be assigned to the `th pool in the jth layer. For example, if
q = 7, in layer 2, the 275th specimen will be assigned to the pool
labeled 3 in that layer.

We note that when q is a prime number, the addition and multi-
plication operations to evaluate the polynomial are simply performed
modulo q. However, when q is a prime power, the arithmetic of the fi-
nite field is more involved—for example, over F16, we have 42 = 3.

We have included in the supplementary material an introduction to
finite fields and arithmetic tables for F16. In this example, if q = 16,
then we consider P275(2) = 22 + 2 + 3 over F16, which turns out to
be 5. Thus, the 275th specimen will be assigned to pool 5 in layer 2.

The process is illustrated in Figure 1, with q = 16, m = 6, and
n = 288. We will return to this example throughout the paper to
illustrate our ideas.

Shifted Transversal Designs [17] are special cases of RS codes,
when q is limited to being a prime rather than a prime power. We
describe the correspondence in the supplementary material. We will
show that RS codes possess all the qualities of STD, while providing
more flexibility: contrary to STD, RS codes are instrinsically well–
adapted to typical laboratory automation hardware.

Results. We first show that RS designs provide good solutions to the
practical challenges of modern biology. Next, we illustrate these ad-
vantages with concrete examples and practically-sized problems. We
generalize our results to encompass general linear codes and asymp-
totic theory, providing a framework to adapt and extend our results
as the needs of the discipline grows. Finally, we outline the tools that
we have made available for the practitioner.

Structural Properties of Reed Solomon pooling designs
From the constructions of RS designs, we immediately see that sev-
eral of our practical desires are met.

First, the parameter space is very rich, and in particular this al-
lows for designs which fully utilize 96-well plates. As in the exam-
ple above, choosing m = 6 and q = 16 yields precisely 96 wells.
Further, as the specimens are also stored in 96-well plates, it is con-
venient for pooling designs to work with n specimens, where n is a
multiple of 96. Again, the example above (where n = 288 = 3 · 96)
demonstrates that this is easily obtainable. Further (as can be seen
in Figure 1), these designs have a lot of structure, resulting in more
efficient pooling as well as error checking of the pooling procedure
by visual inspection.

Second, these designs enjoy excellent regularity and weight.
Each specimen is pooled into exactly one pool in each layer; thus,
each specimen participates in m pools total. It is also true, though
not quite as easy to see, that each pool contains exactly n/q speci-
mens, as long as n is a multiple of q.

This follows from the symmetry of the construction, as well as
some properties of finite fields. Consider breaking the columns of the
matrix M into slabs of size q; this is shown in Figure 2 with the ver-
tical orange lines. Each slab corresponds to a set of q polynomials; in
the case of the highlighted column in Figure 2, these polynomials are
{4U, 4U + 1, . . . , 4U + 15}. For a fixed layer i (i = 1 in the figure),
consider the evaluations of these polynomials on i. In the case of Fig-
ure 2, this is the set {4 · 1, 4 · 1 + 1, . . . , 4 · 1 + 15}. It is not hard to
see that this set is precisely {0, . . . , 15}, when the arithmetic is done
over Fq . Thus, each q × q block of M has precisely one nonzero in
each row and each column.

Fig. 2. Returning to the example of Figure 1, we see that the resulting design
matrix is balanced. In each 16 × 16 block, there is exactly one 1 in each row
and each column. This implies that (a) each of the 288 specimens participates
in exactly 6 pools, and (b) each pool contains exactly 288/16 = 18 spec-
imens. Further, it implies that these properties hold modularly: the design
given by the shaded submatrix has 96 specimens, each of which participates
in exactly 6 pools, so that each pool contains exactly 6 of these specimens.

Footline Author PNAS Issue Date Volume Issue Number 3

This fact implies very strong regularity properties: not only are
the designs light and well-balanced, but these properties hold in a
modular fashion. As described above, it is often useful to be able to
pool different sets of specimens at different times. With RS designs,
as long as the specimens are pooled in multiples of q, the scientist
enjoys light and well-balanced designs in whatever sizes are conve-
nient.

In fact, RS designs are not so exceptional in these respects, ex-
cept for the visual structure. In general, these regularity properties
extend to any designs arising from appropriate linear codes. We will
discuss these generalizations more when we talk about general linear
codes.

Disjunctness and recovery. In addition to convenient structure, the
pooling design should allow for efficient recovery of the pattern of
positive specimens, given the pooled data. For this, we introduce the
notion of disjunctness. A pooling design is d-disjunct if for every set
Λ of d specimens, and every specimen i not in that set, there is some
pool j that includes i but doesn’t include any item in Λ. The resulting
condition on the matrix M is illustrated in Figure 3. If M has this
property, then we can quickly find the correct set of positives from
the pooled results, assuming this set is not larger than d. We simply
assert that an item i is positive if all of its pools were positive. If the
item i was not positive, and the true set of positives was Λ, then the
disjunctness condition precisely states that i will land in some pool
that does not test positive. Disjunctness is discussed in more detail in
the supplementary material.

d

j

i

1 0 0 0

d

i

1 0 1 0

1 0 0 1

0

0

Fig. 3. A pooling design is d-disjunct if for all Λ of size d and all i, there is a row
j as in the lefthand diagram. In contrast, the matrix on the right is not d-disjunct.

For pooling designs arising from codes, like RS designs, it is easy
to obtain a bound on disjunctness. The RS design defined above has
disjunctness at least d = b(m− 1)/kc. In our running example from
Figure 1, this comes out to d = 2. We will see in a later section
(Proposition 1) why this is the case. In terms of the number of speci-
mens n, the above bound guarantees that with t pools we can achieve
disjunctness of a least b t

q(logq(n)−1)
c. This bound gives a trade-off

between recovery guarantees (the maximum number of defectives re-
covered, d) and budget (assumed to be proportional to the number of
pools t). Moreover, the RS-based described above is incremental -
that is, an experimentalist can start with a small number of layers m,
giving a small pooling matrix M with a certain disjunctness value,
and gradually increase m by adding additional layers to the pooling
matrix, hence increasing the disjuncness. Adding an additional layer
j is easily achieved by evaluating the polynomials pi over the field
Fq at the element j ∈ Fq .Modularity
As discussed in the introduction, in many applications it is convenient
to pool samples in batches, so that these batches may either be tested
independently, or mixed with others and tested jointly. More specif-
ically, given two groups of c specimens each, one may pool each
group separately (using two different pooling designs) into p pools
each; the resulting design has 2c specimens pooled into 2p pools.
Alternatively, one may combine or “superpose" the designs, result-
ing in 2c specimens pooled into p pools. The resulting situation for
measurement matrices is shown in Figure 4.

There are trade-offs between these two strategies: in the first,
there are more tests but there are fewer specimens in each pool, po-

tentially yielding more accurate assay results. In the second, there
are fewer tests, but a possibility of less accuracy. One practical goal
in pooling designs is to make this trade-off as beneficial as possible.
That is, we would like to partition the columns of the pooling matrix
M into submatricesMi so that each submatrixMi has good disjunct-
ness. Trivially, each Mi will be at least as disjunct as M itself, but
we seek designs where passing to a submatrix yields a strict improve-
ment in disjunctness (and hence a strictly better trade-off between the
accuracy and the number of pools). We refer to this property as the
modularity of the design, and we discuss the mathematical particulars
in more detail in the section on general linear codes.

Even without improving disjunctness, the smaller designs corre-
sponding to submatrices Mi are easier to decode because the d posi-
tives will be spread across these subdesigns, so that each experiment
will have to deal with (and identify) fewer positives.

In practice, there are many reasons that one might wish to
have the kind of flexibility that modularity entails. For example,
suppose—as is often the case—that one does not know the true num-
ber of positives, d. Then one may use modularity to estimate d on the
fly, as follows. Suppose that the pooling design is given by a modu-
lar matrixM , which decomposes into submatricesM1,M2, . . . ,Mb,
where each submatrix Mi assigns, say, 96 items to p pools. Before
doing any tests, the biologist may pool her samples into b different
96-well plates, according to the b different pooling designs, each with
very good disjunctness. When it is time to run tests, she may choose
to start with a single plate; if her results are very good, she may think
that she has over-estimated d. For her next two tests, she may choose
to combine the second and third plates, which results in a design (as
in Figure 4(b)), with worse disjunctness but fewer pools. If this still
appears too pessimistic, she may continue in this way, testing more
and more plates at a time until she hits the desired trade-off between
disjunctness and the number of pools.

As another example, the Shifted Transversal Design has good
modularity, and this has provided important practical benefits in an
interactome mapping experiment [20]. In this work, subdesigns
(“micro-pools”) were constructed once, and were then combined by
superposition to obtain designs that were well–suited to various ex-
perimental formats: in pairs for the 1536–well format, in sixes for
the 384–well format, and in twelves for the 96–well format.

0

M1

M2

0

p

p

c c

(a)

M1 M2p

c c

(b)

Fig. 4. Different ways of combining two pooling designs given by matrices M1

and M2. In (a), each group of specimens is pooled separately, resulting in 2p
pools. In (b), the pooling designs are combined, resulting in p pools. A designM
consisting of submatrices M1,M2 has good modularity if the pooling matrix
(a) has strictly better disjunctness than the matrix (b).

RS designs (and, as is the trend in this work, designs from appro-
priate linear codes more generally) have good modularity properties.
The basic idea is that each slab of q columns (demarcated by the
orange lines in Figure 2) has similar disjunctness properties. This
follows from the fact that the sets of polynomials they correspond to
look similar: as far as disjunctness is concerned, there is not much
difference between the set {U2 +U,U2 +U +1, . . . , U2 +U +15}
and the set of constant polynomials {0, 1, . . . , 15}. Similarly, at a
larger scale, there is not that much difference between the set of all
polynomials of the form U2 + aU + b and the set of all polynomials
of the form 2U2 + aU + b.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Because of the nature of these symmetries, the modularity nat-
urally occurs for sets of columns of size q, q2, q3, and so on. For
example, when q = 16, m = 6, and k = 3, we may support up to
n = qk = 163 = 4096 items with disjunctness 2. These items can
be divided into subsets of size 162 = 256 with a guarantee of dis-
junctess 5. However, as discussed above, it is often convenient if the
sizes of the subsets of specimens are multiples of 96. For illustration
purposes, consider a slightly larger version of our running example,
where q,m, and k are as above, but where n = 576 = 6 · 96. If we
split up the specimens into six batches of size 96 in the natural way:
the first 96 columns, then the next 96 and so on, most of the blocks
of size 96 do not interfere with the blocks of size 256 (or do not over-
lap the 256-block boundaries). Thus, most batches of 96 specimens
obtained this way inherit the improved disjunctness of the blocks of
size 256. This same argument works for any multiple of 96.

Average disjunctness
Whether we exploit the modularity of the RS design or not, the entire
design of our running example has disjunctness of only two which
seems rather bleak. Unfortunately, with only 96 pools and a large
number of samples, it is not possible to obtain much better worst-case
guarantees. However, in practice, these guarantees are often overly
pessimistic. Thus, it is natural to ask about the performance of these
designs against most patterns of positives. We seek a statement of
the form, “for most patterns of defectives, the group testing matrix is
effectively d-disjunct."

0 2 4 6 8 10 12 14

0

0.5

1

number of defectives, d

su
cc
es
s
p
ro
b
ab

il
it
y,

1
−
δ

Empirical
modular columns

Empirical
random RS columns

Empirical
random matrix

Theoretical guarantee
modular columns

n = 576

200 400 600 800 1,000 1,200

0.4

0.6

0.8

1

number of specimens, n

su
cc
es
s
p
ro
b
ab

il
it
y,

1
−
δ

Empirical
modular columns

Empirical
random RS columns

Empirical
random matrix

Theoretical guarantee
modular columns

d = 6

Fig. 5. Empirical and theoretical bounds on (δ, d)-average disjunctness for RS
designs. In both charts, the empirical performance of the RS pooling design is
compared to its theoretical performance, as well as the empirical performance
of two randomized pooling designs. For the RS matrices, empirical performance
was judged using 5000 random trials. For the random matrices, empirical perfor-
mance was judged from 100 trials each on 100 random matrices. The theoretical
bounds were obtained through a recursive formula described in the supplemen-
tary material.
The top chart traces the empirical and provable success probability 1 − δ of a
RS design with m = 6 and d = 6, as the number of specimens n grows, and
compares this to the failure probability of random designs with the same column
weight and number of tests. The bottom chart fixes n = 576 = 6 · 96, and
varies d. For all RS designs, the worst-case disjunctness is two.

To this end, we define a weaker notion of disjunctness, which we
call the average disjunctness, which measures how many defectives
can be reliably identified in a “typical" rather than worst-case situa-
tion. We say that a set Λ of specimens is bad if it causes a situation
as in the right-hand side of Figure 3. That is, Λ is bad if there is some
specimen i so that i coincides with at least one member of Λ each
time it is pooled. Thus, a design is d-disjunct if all sets Λ of size d
are not bad. We relax this in a natural way, and say that a pooling
design is (δ, d)-average-disjunct, if at most a δ-fraction of the sets of
specimens Λ of size d are bad. (When δ is not mentioned, we take it
to be an appropriate small constant, like 0.01).

Thus, if the positive specimens are randomly distributed, with
probability 1−δ, the set of positive specimens that appears is not bad.
Thus, by the same reasoning about the (worst-case) disjunctness, we
conclude that (δ, d)-average-disjunctness allows efficient identifica-
tion of d positives chosen uniformly at random with probability at
least 1 − δ. Of course, it is unreasonable to assume in practice that
the positive specimens will be uniformly distributed. However, the
above reasoning works for any distribution which is “close" to the
uniform one in an appropriate sense; e.g., physical specimens are as-
signed column identities at random.

A matrix may be d-average-disjunct without being d-disjunct,
and we are interested in quantifying and exploiting this gap. We do
so both in practice and in theory. In the supplementary material, we
show how to efficiently compute simple, provable bounds on the val-
ues of (δ, d) so that RS designs are (δ, d)-average disjunct. We com-

Footline Author PNAS Issue Date Volume Issue Number 5

plement our theoretical results with empirical ones, which indicate
that our bounds are quite accurate for small d, and lose accuracy as d
grows.

Our results, both theoretical and empirical, are displayed in Fig-
ure 5. We compared the empirical performance of the RS pooling
design to two randomized designs. For the first random design, we
chose n random columns from an RS design with the full qk possi-
ble columns; this comparison is meant to illustrate that our modular
column selection is not only convenient for practical considerations,
it also actually yields better performance. For the second random de-
sign, we chose a random m · q × n matrix with m ones per column.
Theoretically, random matrices offer the best asymptotic guarantees,
and so the fact that RS designs outperform it for reasonably sized
values of n is striking.

These results are much more hopeful than the worst-case bounds
of d = 2. For n = 576, for example, up to 7 or 8 positives may
be accurately identified with reasonable probability. Further, we see
that RS designs perform much better than comparable randomly gen-
erated designs.

The general case: asymptotics and linear codes
So far, we have addressed practical problems and used specific ex-
amples to show how RS designs can be used to tackle challenges that
actually arise in biology. However, the theory extends much more
generally. First, most of the results above extend to pooling designs
generated from linear codes, and Reed-Solomon codes are a special
case. Second, we have provided example computations for fixed val-
ues of n and t, focussing on the useful case where t = 96 and n is
in a reasonable range. However, as more data become available and
problem sizes increase, it is useful to have a theory in place that han-
dles the asymptotics as t and n grow. In this section, we show how to
extend the theory we have developed in these directions. Complete
details may be found in the supplementary material.

We use standard notations employed in computer science to
describe asymptotic properties of our codes and pooling designs.
Specifically, we denote by O(f(n)) any function that grows at a rate
not faster than f(n), as n grows (n → ∞). Similarly, we denote
Ω(f(n)) a function that grows at a rate not slower than f(n). Fi-
nally, we denote by Θ(f(n)) a function which is both O(f(n)) and
Ω(f(n)), that is, a function growing at the same rate (up-to a con-
stant) as f(n). More formal definitions can be found in [4].

Linear Codes. Most of the results above extend to pooling designs
generated from linear codes. We first sketch what we mean by linear
codes for a general audience. However, we state our results in this
section in moderately more technical language. In the supplemen-
tary material, we include an introduction to the terminology of linear
codes, and also detailed proofs of the results in this section.

Another way of viewing the construction of RS designs is as fol-
lows. First, we construct an intermediatem×qk+1 matrix M̃RS with
entries in Fq . As before, the columns are indexed by polynomials P
of degree at most k. The rows are indexed by the first m elements
of Fq . The entry in row i and column P contains P (i). In order to
obtain our design matrixM = MRS , we turn each row of M̃RS into
a layer, replacing ` ∈ Fq with a column that is 1 in the `’th position
and zero elsewhere. Finally, we take only the first n columns.

The columns of M̃RS form a Reed-Solomon code, which is why
we have called MRS an RS design. We may perform the same pro-
cedure on M̃C , where the columns of M̃C form any set C ⊂ Fmq ,
which we call a code. Reed-Solomon codes are linear, which means
that the columns of MRS are closed under addition (over Fq), and
we will be interested in codes C with this property. One parameter
of interest of a code C ⊂ Fmq is the distance, that is, the maximum
Hamming distance (number of differing symbols) between any two
columns of MC . For example, the distance of Reed-Solomon codes

is m − k, because any two polynomials P and Q of degree at most
k can agree in at most k places. Any linear code may be described
by an s × m generator matrix,and s is called the dimension of C.
For example, the dimension of a Reed-Solomon code with degree k
is k + 1. If C ⊂ Fmq has distance ∆ and dimension s, we say it is a
[m, s,∆]q code.

Structural properties of linear codes. As with RS designs, any MC

arising from any linear code C has excellent regularity and disjunct-
ness properties. We have the following well-known proposition.
Proposition 1. Let C be an [m, s,∆]q linear code. Then MC is a
(qs−1,m)-regular matrix that is d-disjunct for any d < m−∆

m
(i.e.,

every row of MC has at most qs−1 + 1 ones and every column has
at most m+ 1 ones).

In fact, this result also holds when C is a coset of an [m, k,∆]q
code (that is, if C = {v + x ·G|x ∈ Fkq} for some v ∈ Fmq), which
will be useful for generalizing our modularity results. In a previous
section, we observed that RS codes enjoyed modular regularity prop-
erties. In fact, this is true of many linear codes as well; we describe
in the supplementary material when this is the case.

Modularity of linear codes. In a previous section, we gave examples
of the modularity of RS designs. In this section, we support and gen-
eralize these examples.

Informally, we call a matrix M strictly modularly disjunct if (a)
it itself is a regular disjunct matrix and (b) more importantly, certain
sub-matrices are also regular disjunct matrices (but with stricly bet-
ter disjunctness property). We have already seen this notion and it is
formally defined in the supplementary material.

Our main contribution here is to identify two natural properties
of linear codes C that are sufficient to ensure that MC is a strictly
modularly disjunct matrix. The first property is that in addition to
C having good distance, certain subsets of C (which themselves are
linear codes) also have good distances. This is formally captured by
the notion of nested distance (in the supplementary material). The
intuition is that we can apply Proposition 1 to these “sub-codes" to
get good disjunctness. The second property is that the linear code has
to be heavy. This generalizes the property of RS codes we saw pre-
viously, where two carefully chosen subsets of columns were equiv-
alent. We formally argue in the supplementary material that a linear
code with good nested distance that is heavy results in strictly modu-
larly disjunct pooling designs.

The above is only applicable if we can come up with heavy lin-
ear codes of good nested distance. Reed-Solomon codes are in fact
such codes, and our comments earlier about their modularity fol-
low as a special case. In fact, there is a sense in which most linear
codes satisfy the conditions. Consider a random linear code, gen-
erated by a random s × m generator matrix G over Fq . For such
codes, we can show that the corresponding pooling design matrix
is d-disjunct. Furthermore, we show that a random linear code is
heavy and has good nested distance; therefore, it is strictly modular -
thus, we can build efficiently modular codes of size logarithmic in d
and n (see the supplementary material for details). This in turn im-
plies that there exists strictly modularly disjunct pooling designs with
O
(
d2 logn · log d

log log2 d

)
number of rows (where d is the disjunctness

of the matrix as a whole). In other words, to attain the stricter notion
of strictly modularly disjunct pooling designs, we only lose a small
logarithmic factor over what is known to be achievable with the tra-
ditonal notion of d-disjunctness. (See the supplementary material for
the formal result.)

Discussion
We have written a software package that is publicly available [21].
This software allows the user to upload a comma separated value file
that specifies a pooling design and then it renders each step of the

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

pooling in a browser so that a user can carry out the pooling design
by hand. She places a tray of specimens on one side of the ipad (or
equivalent tablet device) and then she places the tray for the pooled
specimens on the other. The details in [21] describe the procedure
and provide a figure of the experimental setup.

ACKNOWLEDGMENTS. The authors would like to thank the Institute for Math-
ematics and its Applications for facilitating our initial collaboration. This publi-
cation was supported by a National Human Genome Research Institute grant
R21HG006167 and National Science Foundation grants CCF-1161196, CCF
1161233, and CCF 0910765.

1. Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience Se-
ries in Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken,
NJ, third edition, 2008.

2. W. J. Bruno, E. Knill, D. J. Balding, D. C. Bruce, N. A. Doggett, W. W. Sawhill, R. L.
Stallings, C. C. Whittaker, and D. C. Torney. Efficient pooling designs for library
screening. Genomics, 26(1):21–30, Mar 1995.

3. K.-M. Cheung. Identities and approximations for the weight distribution of q -ary
codes. IEEE Transactions on Information Theory, 36(5):1149 –1153, sep 1990.

4. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2001.

5. Yaniv Erlich, Kenneth Chang, Assaf Gordon, Roy Ronen, Oron Navon, Michelle
Rooks, and Gregory J Hannon. DNA Sudoku—harnessing high-throughput se-
quencing for multiplexed specimen analysis. Genome Research, 19(7):1243–1253,
July 2009.

6. Edgar. N. Gilbert. A comparison of signalling alphabets. The Bell System Technical
Journal, 31(3):504–522, May 1952.

7. D. Golan, Y. Erlich, and S. Rosset. Weighted pooling–practical and cost-effective
techniques for pooled high-throughput sequencing. Bioinformatics, 28(12):197–
206, Jun 2012.

8. F. Jin, L. Avramova, J. Huang, and T. Hazbun. A yeast two-hybrid smart-pool-array
system for protein-interaction mapping. Nat. Methods, 4(5):405–407, May 2007.

9. F. Jin, T. Hazbun, G. A. Michaud, M. Salcius, P. F. Predki, S. Fields, and J. Huang.
A pooling-deconvolution strategy for biological network elucidation. Nat. Methods,
3(3):183–189, Mar 2006.

10. Raghunandan M Kainkaryam, Angela Bruex, Anna C Gilbert, John Schiefelbein, and
Peter J Woolf. poolMC: Smart pooling of mRNA samples in microarray experiments.
BMC Bioinformatics, 11(1):299, June 2010.

11. W. H. Kautz and R. C. Singleton. Nonrandom binary superimposed codes. IEEE
Trans. Inf. Theory, 10:363–377, 1964.

12. Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-
Verlag, New York, third edition, 2002.

13. Stefano Lonardi, Denisa Duma, Matthew Alpert, Francesca Cordero, Marco Bec-
cuti, Prasanna R. Bhat, Yonghui Wu, Gianfranco Ciardo, Burair Alsaihati, Yaqin Ma,
Steve Wanamaker, Josh Resnik, Serdar Bozdag, Ming-Cheng Luo, and Timothy J.
Close. Combinatorial pooling enables selective sequencing of the barley gene
space. PLoS Computational Biology, 9(4), 2013.

14. F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. I. North-
Holland Publishing Co., Amsterdam, 1977. North-Holland Mathematical Library, Vol.
16.

15. F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. II. North-
Holland Publishing Co., Amsterdam, 1977. North-Holland Mathematical Library, Vol.
16.

16. Ely Porat and Amir Rothschild. Explicit nonadaptive combinatorial group testing
schemes. IEEE Transactions on Information Theory, 57(12):7982–7989, 2011.

17. N Thierry-Mieg. A new pooling strategy for high-throughput screening: the Shifted
Transversal Design. BMC Bioinformatics, 7(1):28, 2006.

18. N Thierry-Mieg and G Bailly. Interpool: interpreting smart-pooling results. Bioin-
formatics, 24(5):696–703, 2008.

19. Rom R. Varshamov. Estimate of the number of signals in error correcting codes.
Dokl. Akad. Nauk. SSSR, (117), 1957.

20. X. Xin, J. F. Rual, T. Hirozane-Kishikawa, D. E. Hill, M. Vidal, C. Boone, and N. Thierry-
Mieg. Shifted Transversal Design smart-pooling for high coverage interactome
mapping. Genome Res., 19(7):1262–1269, Jul 2009.

21. Dina Zielinski, Assaf Gordon, Benjamin L Zaks, and Yaniv Erlich. iPipet: sample
handling using a tablet. Nature Methods, 11(8):784–785, 2014.

Footline Author PNAS Issue Date Volume Issue Number 7

Appendix

Table 1. Summary of biological assays that use pooling designs.
Aim items (x) assay (y) Pooling design Reference
Finding sequencing tag
sites

Yeast artificial chromosome li-
brary (YAC)

PCR amplification k-set packing design [2]

Gene expression Samples of Arabidopsis
thaliana

Expression array Expander [10]

Genome assembly BACs of Barley High throughput sequencing STD [13]
Interactome mapping Yeast strains expressing an OR-

Feome as Y2H prey constructs
Yeast two hybrid STD [20]

Interactome mapping Protein domains Protein microarray logarithmic pattern [9]
Interactome mapping Yeast strains expressing an OR-

Feome as Y2H prey constructs
Yeast two hybrid logarithmic pattern [8]

Mutant screens for drug
resistance

Yeast library with systematic
deletions

growth assay logarithmic pattern [9]

Validation of RNAi li-
braries

RNAi inserts in bacterial
colonies

high throughput sequencing CRT [5]

Fitness profiling Fission yeast deletion strains high throughput sequencing STD [?]
Discovery of synergis-
tic drug combinations

Chemical compounds Fluorescence-based assay STD [?]

Mathematical background and definitions. We begin with some notation. For any integer n ≥ 1, let [n] denote the set {1, . . . , n}. Given
an n-dimensional vector x, we will denote its ith component by xi, i ∈ [n]. The entry of a matrix M in the ith row and jth column will be
denoted by Mi,j .

For any set X of numbers and any positive integer n, let Xn denote the set of all n-dimensional vectors v = (v1, v2, · · · , vn) such that
each vi, i ∈ [n], is a member of X . For example, Rn is the set of all n-dimensional real vectors, and Fnq is the set of all n-dimensional vectors
over the finite field Fq . (We briefly define finite fields below.)

Finite fields. Informally, a field is a set of elements such that one can perform addition, multiplication, subtraction, and division on these
elements without obtaining results outside the set. For example, the set of real numbers is a field. These properties of a field endow the real
numbers with the familiar set of arithmetic properties. When the field is finite, the structure becomes quite different. In order for the results of
the four operations to always stay within the set, both the set size and the meanings of addition, subtraction, division, and multiplication have
to have a specific structure. For example, a finite field can only have size q, where q is a prime power. We shall use Fq to denote the finite field
on q elements, as it is a fundamental result in algebra that all finite fields of the same size are isomorphic—that is, they have the same structure.
In every finite field F, there is a designated element denoted by 0 and another denoted by 1. Every element a ∈ F has an additive inverse
b ∈ F such that a+ b = 0. Every element a ∈ F with a 6= 0 has a multiplicative inverse b ∈ F such that a · b = 1. Sometimes, we denote the
additive inverse of a by −a, and the multiplicative inverse of a by a−1. Then, subtraction and division are defined to be equivalent to addition
by the additive inverse and multiplication by multiplicative inverse. This way, only addition and multiplication need to be formally defined
for a finite field F. Addition and multiplication in a finite field can be computed using an addition and a multiplication table, as shown in an
example below. A full discussion of finite fields, their operations, their addition and multiplication tables, their properties, and the motivations
for having them will require a full textbook on abstract algebra (e.g., [12]). Within the scope of this supplementary material, we can only
present a sketch of finite field properties we need to define our pooling designs. We next give examples of specific finite fields.

The finite field Fp where p is a prime number. Finite fields Fp where p is a prime are called prime fields. The set of elements are
Fp = {0, 1, . . . , p− 1}, where the addition (let us denote it by +) is normal addition modulo p (i.e. we add the numbers as integers and then
take the remainder when we divide the sum by p) and multiplication (let us denote it by ·) is normal multiplication modulo p (i.e. we multiply
the numbers as integers and then take the remainder when we divide the product by p). Subtraction and division are correponding inverses of
addition and multiplication. It can be shown that in this case the inverses are well-defined (except for division by 0).

We illustrate prime fields with p = 13. Tables 3 and 4 give the tables of addition and multiplication of two elements from F13 respectively.

The fields Fq for q power of 2. For designing practical group testing matrices, we often work with fields Fq where q is a power of 2. In this
case the arithmetic operations in Fq are a bit more complicated than the prime field case. For example, when q = 24 = 16, Tables 5 and 6
present the tables for addition and multiplication of two elements from F16 respectively.

Table 2. Specific notation for quantities of interest.

m number of polynomial evaluation points
t number of pools or tests
q field size
k maximum degree of polynomials in RS code
n total number of polynomials in RS code
n number of items or specimens
m number of layers in RS matrix

8 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Table 3. Table for addition over F13

+ 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12 0
2 2 3 4 5 6 7 8 9 10 11 12 0 1
3 3 4 5 6 7 8 9 10 11 12 0 1 2
4 4 5 6 7 8 9 10 11 12 0 1 2 3
5 5 6 7 8 9 10 11 12 0 1 2 3 4
6 6 7 8 9 10 11 12 0 1 2 3 4 5
7 7 8 9 10 11 12 0 1 2 3 4 5 6
8 8 9 10 11 12 0 1 2 3 4 5 6 7
9 9 10 11 12 0 1 2 3 4 5 6 7 8
10 10 11 12 0 1 2 3 4 5 6 7 8 9
11 11 12 0 1 2 3 4 5 6 7 8 9 10
12 12 0 1 2 3 4 5 6 7 8 9 10 11

Table 4. Table for multiplication over F13

· 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0 2 4 6 8 10 12 1 3 5 7 9 11
3 0 3 6 9 12 2 5 8 11 1 4 7 10
4 0 4 8 12 3 7 11 2 6 10 1 5 9
5 0 5 10 2 7 12 4 9 1 6 11 3 8
6 0 6 12 5 11 4 10 3 9 2 8 1 7
7 0 7 1 8 2 9 3 10 4 11 5 12 6
8 0 8 3 11 6 1 9 4 12 7 2 10 5
9 0 9 5 1 10 6 2 11 7 3 12 8 4
10 0 10 7 4 1 11 8 5 2 12 9 6 3
11 0 11 9 7 5 3 1 12 10 8 6 4 2
12 0 12 11 10 9 8 7 6 5 4 3 2 1

Table 5. Table for addition over F16

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Footline Author PNAS Issue Date Volume Issue Number 9

Table 6. Table for multiplication over F16

· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13
3 0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2
4 0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9
5 0 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6
6 0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4
7 0 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11
8 0 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1
9 0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14
10 0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12
11 0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3
12 0 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8
13 0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7
14 0 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5
15 0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10

Linear codes. An [m, k,∆]q-linear-code is a set C of m-dimensional vectors over the finite field Fq (that is, C ⊆ Fmq), so that C forms a
k-dimensional subspace of Fmq .

Elements of C are called codewords of the code. Each codeword can be identified by a message, which is a vector x ∈ Fkq . In particular,
C = {C(x) | x ∈ Fkq} and thus |C| = qk. We can think of a message x as an index to access a code array C. Each member of the array is a
vector in Fmq and there are qk members in the array. Because C(x) forms a subspace, the codewords C(x) are determined by a full rank k×m
matrix G over Fq , called the generator matrix of the linear code. More precisely, for every message x ∈ Fkq , the corresponding codeword
C(x) ∈ Fmq is defined by C(x) = x ·G. Here, all arithmetic is carried out over the finite field Fq .

The weight of a codeword is the number of nonzero components. The Hamming distance ∆(c, c′) between two codewords c 6= c′ ∈ C
is the number of coordinates i ∈ [m] such that ci 6= c′i. The minimum distance, or simply distance, of the code C is the minimum Hamming
distance between two different codewords in C. For an [m, k,∆]q-linear-code, ∆ is the distance. Equivalently, because the code is linear (i.e.,
it can be defined with a generator matrix), it has minimum distance ∆ if and only if the minimum weight of non-zero codewords is ∆.
Definition 1. A coset of an [m, k,∆]q-linear-code C is a set of vectors of the form {v + x · G | x ∈ Fkq}, where v ∈ Fmq is a fixed (but
arbitrary) vector. The coset is often denoted by v + C.

It can be shown that for two vectors v,v′ ∈ Fmq , the cosets v + C and v′ + C are either identical or disjoint. And, it is well-known that
the disjoint cosets of C form a partition of the vector space Fmq .
Definition 2. Given a linear code C with generator matrix G, the dual linear code C⊥ of C is defined to be the set

C⊥ = {v | G · vT = 0}.

In other words, the dual linear code consists of all vectors in Fmq which are orthogonal to all vectors in C.
Reed-Solomon codes are a special case of linear codes.

Definition 3 (Reed-Solomon Code). Let 1 ≤ k ≤ m ≤ q be positive integers such that q is a prime power. An [m, k,m − k + 1]q Reed-
Solomon (RS) code is defined as follows. Pick some set S of m distinct elements α1, . . . , αm ∈ Fq called the evaluation points. Then,
associate each message x = (xk−1, . . . , x0) ∈ Fkq with the univariate polynomial

Px(Y) = xk−1Y
k−1 + xk−2Y

k−2 + · · ·+ x1Y + x0.

Finally, the Reed-Solomon codeword corresponding to x is the vector obtained by evaluating Px(Y) at the n chosen points; i.e.,

RS(x) = (Px(α1), Px(α2), . . . , Px(αm)) ,

and we define the Reed-Solomon code as
RS = RS(S) =

{
RS(x) : x ∈ Fk

}
.

Given this definition, it is not too hard to see that the generator matrix corresponding to the above Reed-Solomon code is

GRS =

αk−1

1 αk−1
2 · · · αk−1

m

αk−2
1 αk−2

2 · · · αk−2
m

...
...

...
...

α1 α2 · · · αm
1 1 · · · 1

 [1]

We will also consider subsets of Reed-Solomon codes, which correspond to picking a subset Ω of degree-(k− 1) polynomials (or equiva-
lently a subset of messages x ∈ Fk). We refer to the subset of the Reed-Solomon code obtained by using polynomials Ω and evaluation points
S as

RS(S,Ω) := {(Px(α))α∈S : Px ∈ Ω.}
10 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Definition 4 (Binary matrix from linear code or a coset of a linear code). Given an [m, k,∆]q linear code C, we define an (mq)× qk matrix
MC as follows. We associate each of the mq rows with a pair (i, y) ∈ [m] × Fq , and each of the qk columns with a message x ∈ Fkq . Then
we define the entry of MC in row (i, y) and column x by

MC
(i,y),x =

{
1 If C(x)i = y
0 Otherwise

Let v ∈ Fmq be an arbitrary vector. We define the binary matrix Mv+C in the same way:

Mv+C
(i,y),x =

{
1 If v + C(x)i = y

0 otherwise

We conclude this section by using the definitions of a Reed-Solomon code and its associated binary matrix to show that the pooling design
given by the binary matrix of a special case of a Reed-Solomon code is equivalent to the shifted transversal design (STD), a design used in a
number of biological applications.
Definition 5. Let n be the number of desired columns, choose a prime number p with p < n, set k equal to the smallest integer κ such that
pκ ≥ n, and choose the desired number of layers m ≤ p., The shifted transversal design STD(n, p,m) construction from [17] is defined as
the concatenation of m p× n Boolean matrices, M (`), for ` = 0, . . . ,m− 1; i.e.,

STD(n, p,m) =

M (0)

M (1)

...
M (m−1)

 .
The columns M `

0 , . . . ,M
`
n−1 of each layer are given by cyclic shifts of a base vector

M
(0)
0 =

1
0
...
0

 M
(`)
i = σs(i,`)p M

(0)
0

where σsp is a cyclic shift of order s for a vector of length p and

s(i, `) =

k−1∑
c=0

`c
⌊
i

pc

⌋
. [2]

The effect of the cyclic shift σs(i,`)p on the vector M (0)
0 is to shift the 1 from the first position to the s(i, `) mod p position in the vector

M
(`)
i .

Proposition 2. When q is a prime number p, the pooling designM from the [m, k,m−k+1]q-RS code is the same as the STD(n = pk, p,m)
(up to the ordering of the columns and the layers).

Proof. We will start from the definition of the STD matrix and show that the columns of the concatenated layers M (`) are exactly the columns
of M , as defined for Reed-Solomon codes.

We use the convention that a vector of length p has components labeled 0 through p − 1, then the position of the 1 in the vector M (`)
i

is simply s(i, `) mod p. All of the computations in Equation [2] can, therefore, be executed modulo p. That is, we can replace all of the

terms of the form
⌊
i
pc

⌋
with the expression

⌊
i
pc

⌋
mod p and observe that this expression is nothing other than the cth digit bc in the base p

expansion of i,

i =

k−1∑
c=0

bcp
c where bc =

⌊
i

pc

⌋
mod p.

Let b = (b0, b1, . . . , bk−1) denote the vector of coefficients in the p-ary expansion of i and set Pb(x) ∈ Zp[x] to be the polynomial with
coefficients given by the components of b

Pb(x) =
k∑
c=0

bcx
c.

With these definitions, it is clear that s(i, `) = Pb(`) and that the position of the 1 in the vector M (`)
i is nothing other than the value of the

polynomial Pb(x) evaluated at x = `. Furthermore, there are pk possible vectors b (and hence, n = pk, as desired).

Footline Author PNAS Issue Date Volume Issue Number 11

Combinatorial group testing. In the traditional combinatorial group testing framework, we express a pooling design by a binary t× n matrix
M = (Mij), where Mij = 1 if and only if item j is present in pool i. In the context of this paper, we can think of an item as a specimen; but
as we are discussing the fundamentals of group testing in this section, we will continue to use the traditional terminologies for group testing.
The weight of a row or a column of this matrix is the number of 1’s present in it. The column weight of the j’th column of M thus represents
the number of pools that item i belongs, and the row weight of the i’th row is the number of items pooled together in pool i.

Each pool tests positive if there is at least one positive item in the pool. The semantic of positivity depends on the application at hand.
The test outcomes of all pools can thus be represented by a vector y = (y1, y2, . . . , yt) ∈ {0, 1}t, where yi = 1 if and only if the i’th pool’s
test outcome is a positive outcome. The key requirement for a pooling design M to be sound is that from the outcome vector y we are able to
identify the set of at most d positive items, where d is an apriori bound on the maximum number of positive items. This worst-case assumption
on the maximum number of positive items is in the same spirit as the Hamming formulation in coding theory.

If the pooling matrix M allows for unique and correct identification of the positive items, then it is said to be a d-separable matrix. It
is not hard to show that the matrix M is d-separable if and only if the Boolean unions of any combination of up to d columns of M are all
distinct, and thus they give rise to distinct test outcome vectors y. The notion of d-separability does not indicate how we identify the positive
items given the test outcome vector y; although in principle we can pre-compute all possible unions of up to d columns of M and store the
results in a huge lookup table with

∑d
k=0

(
n
k

)
entries.

For moderately large values of n and d, the lookup table is too large to be useful in practice. Hence, group testing theory has mostly focused
on a slightly relaxed notion of pooling design matrix M which allows for fast positive item identification. The algorithm for identifying the
positive items is very simple: we simply eliminate all items that participate in negative tests, because in case of no testing errors those items
are guaranteed to be negative items. This algorithm is called the naive decoding algorithm. If the matrixM satisfies the property that the naive
decoding algorithm always works correctly, i.e. the remaining items are always precisely the positive items, then the matrix is said to be a
d-disjunct matrix. While it may seem that d-disjunctness is a much stronger property than d-separability, it turns out that the optimal number
of rows of a d-disjunct matrix is not too far from the optimal number of rows of a d-separable matrix. Hence, by slightly sacrificing the number
of tests, we gain a great speedup in decoding time and saving in space requirement for the testing and decoding procedures.

It is also not hard to show that the above algorithmic definition of a d-disjunct matrix is equivalent to the following combinatorial definition.
The advantage of the combinatorial characterization of disjunct matrices is that it gives us an obvious method to verify whether a given matrix
is disjunct.
Definition 6 (Disjunct Matrix). A t× n binary matrix M is d-disjunct (for 1 ≤ d ≤ n− 1) if and only if the following is true: for any subset
Λ ⊂ [n] of columns such that |Λ| = d and an arbitrary column j ∈ [n]−Λ, there exists a row i such that the jth column has a 1 in row i and
all columns in Λ have a zero in row i.

As we have alluded to in the introduction, practical applications of group testing often require the pooling matrix to be well-balanced.
In particular, it is desirable to have a pooling matrix with close to uniform row weight and close to uniform column weight. The following
concept formalizes the notion of a well-balanced matrix.
Definition 7 (Regular and strongly regular matrix). A t × n binary matrix M is called (r, c)-regular for integers 1 ≤ c ≤ t and 1 ≤ r ≤ n
if every row has either r or r + 1 ones and every columns has either c or c + 1 ones. If the rows of the matrix have exactly r ones and the
columns exactly c ones, we say the matrix is strongly (r, c)-regular.

We will show below how to construct disjunct matrices which are (strongly) regular from linear codes. The idea of constructing a disjunct
matrix from a linear code dates back to the classic work of Kautz and Singleton on superimposed codes [11]. Superimposed codes are
equivalent to disjunt matrices. In fact, Kautz and Singleton already showed us how to construct a disjunct matrix from Reed-Solomon codes,
of which the STD design is a special case. The main mathematical contributions of our work is to derive more properties of the RS-code-based
construction of disjunct matrices pertaining to practical group testing requirements and to extend this analysis to general linear codes.
Proposition 3. Let C be an [m, k,∆]q-linear-code and v ∈ Fmq be an arbitrary vector. Then Mv+C is a strongly (qk−1,m)-regular matrix
that is d-disjunct for any d satisfying the following inequality:

m > d(m−∆). [3]

Proof. We begin with the case when v = 0. To see that the matrix Mv+C = MC is d-disjunct, we reason as follows. Let Λ be an arbitrary
subset of d codewords of C, and c an arbitrary codeword not in Λ. Note that there is a one to one correspondence between codewords and the
columns of the matrix MC ; hence, we will use “codewords” and “columns of MC” interchangeably. For each codeword c′ ∈ Λ, there are at
most m − ∆ positions i ∈ [m] for which ci = c′i. Hence, when m > d(m − ∆) there exists at least one position ī ∈ [m] for which cī is
different from c′ī for any codeword c′ ∈ Λ. Hence, the row of MC indexed by the pair (̄i, cī) has a 1 in column c and 0 in all columns c′ ∈ Λ.
We conclude that MC is d-disjunct.

By construction, every column of MC has exactly m ones and by the well known fact that for every i ∈ [m] and y ∈ Fq , there are exactly
qk−1 messages x ∈ Fkq such that C(x)i = y, we conclude that every row of MC has exactly qk−1 ones. This proves that MC is a strongly
(qk−1,m)-regular matrix.

Finally, we consider the case when v 6= 0. In this case C still has minimum distance ∆, which allows us to show that Mv+C is d-disjunct
exactly as in the argument above for MC . The column regularity follows by construction and the row regularity follows from the fact that in
order to have Mv+C

(i,y),x = 1 we need C(x)i = y− vi. Thus, we still have the property that for fixed i and y there are exactly qk−1 messages x
such that v + C(x)i = y, which implies the desired row regularity.

A pooling design matrix MC constructed directly from an [m, k,∆]q-linear-code C has n = qk columns. In practice, we cannot expect
the number of items (or specimens) to be an exact power of a prime. Since pooling design matrices constructed from linear codes have very
nice properties such as regularity and modularity, we want to retain the construction. The straightforward way out is to select parameters q
and k such that n is just smaller than qk, and then remove the last qk − n columns of the matrix. Unfortunately, removing arbitrarily qk − n
columns from the matrix MC might significantly reduce the row-weight uniformity of the matrix, making it unbalanced. To deal with this
problem, we impose a stronger property on the linear code C. An [m, k,∆]q-linear-code C is said to be a heavy linear code if there exists
a generator matrix G for C such that the last row of G is a vector all of whose components are non-zero. The generator matrix for RS-code
shown in Equation 1 has such property. Hence, RS-codes are heavy linear codes. The next proposition explains why heavy linear codes are
useful in our context.
12 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Proposition 4. Let C be an [m, k,∆]q heavy linear code. Let the columns of MC be arranged lexicographically by the messages in Fkq . Then
for any positive integer n ≤ qk, consider the matrix MC|n obtained from MC by dropping the last qk −n columns of MC . Then MC|n is an
(bn/qc,m)-regular matrix.

Proof. Since C is a heavy linear code, it has a generator matrix G such that its last row, which we will denote by g = (g1, . . . , gm), has all
non-zero values. Let G′ denote the matrix obtained from G by removing the last row vg. We will use the generator matrix G while defining
the entries of MC . We now prove the regularity of MC|n. The column regularity of MC|n remains the same as that of MC . So we only need
to be concerned about the row regularity of MC|n.

Consider the last q columns of MC . Note that they are indexed by the q messages of the form (x′, α) where x′ is some vector in Fk−1
q

and α ∈ Fq varies over all values in Fq . For any α ∈ Fq , we have

C((x′, α)) = x′ ·G′ + α · g.

For a fixed position i ∈ [m], because gi 6= 0 when α varies over all q values in Fq the product α · gi also takes all values in Fq . This means
the coordinate C((x′, α))i varies over all of Fq when α does. This fact holds true for all positions i ∈ [m].

Consequently, when we remove the last q columns from MC , we reduce the row weight of MC by exactly 1. Since the above reasoning
holds for any x′, we can continue the argument above untill we are left with n columns. If q does not divide n, then we will remove less than
q columns in the last chunk of q columns. Again by the argument above, it can be seen that the final row weights will either be bn/qc or
bn/qc+ 1.

We next formalize the notion of mudularity that is a desired property of pooling matrices as alluded to in the introduction. Roughly
speaking, a “modular” matrix is a pooling design matrix whose columns can be partitioned into a collection of sub-matrices which are also
regular and disjunct.
Definition 8 (Modular matrix). We say that a t× n binary matrix M is (d, q)-modularly disjunct , where 1 ≤ d ≤ n− 1 and q divides n, if
the following hold:

(i) M is an (r, c)-regular d-disjunct matrix.
(ii) For 1 ≤ i ≤ q, let M [i] be the t× n/q column submatrix of M that contains the ith contiguous chunk of n/q columns. Then each matrix

M [i] is an (r/q, c)-regular d′-disjunct matrix for some d′ ≥ d.

In fact, we would like to construct such matrices where the modularity property holds for multiple “recursion” levels. We will show in the
next section how to construct such nice matrices from linear codes. Towards this end, we define the recursive versions of modularly disjunct
matrices.
Definition 9 (Strictly modular matrix). Let 1 ≤ d1 ≤ d2 ≤ · · · ≤ d` ≤ n be a sequence of integers such that at least one of the inequalities
is strict. Then we call a t× n binary matrix M to be ((d1, . . . , d`), q, `)-strictly modularly disjunct (where q divides n), if the following hold.
M is a (d1, q)-modularly disjunct matrix. Further, if ` > 1, then for every 1 ≤ i ≤ q, M [i] is ((d2, . . . , d`), q, ` − 1)-strictly modularly
disjunct.

Modularly disjunct matrices from linear codes. As in the previous section, the order in which we label the columns ofMC makes a difference
in the practical application of the design. There are applications where we would like to pool samples in blocks, perhaps at different times,
and then store those blocks to be tested jointly or mixed and matched with other populations in different experiments. That is, we would like
the columns of the pooling matrix to be modular. We now show how a code with good “nested" distance leads to a strictly modularly disjunct
matrix. We first fix a notation, given a k ×m generator matrix G and an i ∈ [k], let Gi denote the matrix obtained from G by removing the
first i− 1 rows of G.
Definition 10. Let 1 ≤ ∆1 ≤ ∆2 ≤ · · · ≤ ∆k be integers. Let G be a k ×m generator matrix for an [m, k,∆1] code C. We say C has a
nested distance of (∆1, . . . ,∆k) if for every i ∈ [k], the code corresponding to Gi is an [m, k − i+ 1,∆i]q-code.
Proposition 5. Let m ≥ ∆k ≥ ∆k−1 ≥ · · · ≥ ∆1 be integers. For every i ∈ [k], define di to be the largest integer such that

m > di(m−∆i).

Then if C is an [m, k]q linear code with nested distance (∆1, . . . ,∆k), then MC is a ((d1, . . . , dk), q, k)-strictly modularly disjunct matrix.

Proof. Since C is an [m, k,∆1]q linear code, then Proposition 1 implies that M is d1-disjunct and is (qk−1,m)-regular, as desired. Let us
now consider the q submatrices (MC)[i] for i ∈ [k]. These matrices correspond to the cosets of the linear code corresponding to the generator
matrix G2, which by definition have distance ∆2. This implies that each of these matrices are d2-disjunct. The proof can then be completed
by induction. Next, we fill in the details.

Recall that the columns of MC are indexed in lexicographic order by the messages in Fkq . For the rest of the argument fix an i ∈ [k]. Then
note that the columns of (MC)[i] are indexed by the messages {(βi,x′)}x′∈Fk−1

q
, where βi is the ith element in the lexicographic ordering of

the elements in Fq . In other words, the columns in (MC)[i] for x′ ∈ Fk−1
q corresponds to the codewords

C(βi,x
′) = βi · g1 + x′ ·G2,

where g1 is the first row inG. In other words, the codewords corresponding to columns in (MC)[i] correspond to a coset of the code generated
by G2. Thus, by Proposition 1, (MC)[i] is d2-disjunct matrix that is (qk−2,m)-regular. Applying this argument inductively (and noting that
for any linear code C and a coset C′, v + C′ is also a coset) completes the proof.

Propositions 4 and 5 imply the following result.
Theorem 1. Let m ≥ ∆r ≥ ∆r−1 ≥ · · · ≥ ∆1 be integers. For every i ∈ [r], define di to be the largest integer such that m > di(m−∆i).
Suppose C is an [m, s]q heavy linear code with nested distance (∆1, . . . ,∆k), then for any 1 ≤ ` ≤ r and n which is a multiple of q`, one
can construct an mq × n matrix MC that is a ((d1, . . . , d`), q, `)-strictly modularly disjunct matrix.
Footline Author PNAS Issue Date Volume Issue Number 13

Random linear codes. While our previous result, Theorem 1, explains how to obtain a modularly disjunct matrix from a heavy linear code
with the right nested distance properties, it does not explain how to obtain efficiently a code with such properties. In the rest of this section,
we show that we can construct a modularly disjunct matrix efficiently from cosets of a random linear code.

Consider a random k ×m matrix G over Fq . The corresponding linear code C is known to satisfy the Gilbert-Varshamov (GV) bound
[19, 6, 15, 14]; i.e., its distance is at least

(
H−1
q (1− k/m− ε)

)
m with probability at least 1− qεm, where Hq(x) denotes the q-ary entropy

function, namely

Hq(x) = x logq(q − 1) + x logq

(
1

x

)
+ (1− x) logq

(
1

1− x

)
.

Porat and Rothschild [16] showed that for q = Θ(d) and k = Θ(m/(d log d)), the distance is at least m
(

1− 1
d+1

)
. More importantly,

they showed how to use the method of conditional expectation [1] to compute the generator matrix of such a code in time qO(k). Thus,
Proposition 1 implies that the corresponding pooling design matrix is d-disjunct.

We show that, in addition to being d-disjunct and efficiently constructable, a random linear code is also heavy and has good nested distance.
To show that a random linear code is heavy, we need the following result.
Lemma 1 ([3]). Let C be an [m, k,∆]q linear code and let its dual code have distance ∆⊥ + 1. Then the number of codewords in C with all
non-zero values is lower bounded by

(q − 1)m

qm−k
− 2

(
m

∆⊥

)
qk−∆⊥ .

We will use the following two calculations.
Lemma 2. Let 1 ≤ ` ≤ k ≤ m be positive integers. Let q be an integer such that q ≥ 2e2m/` (where e = 2.71828 . . . is the Euler number),
then

(q − 1)m

qm−k
− 2

(
m

`

)
qk−` > 0.

Proof. Noting that q ≥ 2e2m/` > 8m/` > m/`+ 1, and that
(
m
`

)
≤ (em/`)`, we have

2

(
m

`

)
qm−` ≤ 2

(em
`

)`
qm−`

= 2

(
em

q`

)`
qm

= 2

(
em

q`

)`(
1 +

1

q − 1

)m
(q − 1)m

≤ 2

(
em

q`

)`
e

m
q−1 (q − 1)m

≤ 2

(
em

q`

)`
e`(q − 1)m

= 2

(
e2m

q`

)`
(q − 1)m

≤ 2e2m

q`
(q − 1)m

≤ (q − 1)m.

Rearranging the factors gives the desired inequality.

Lemma 3. For every integer d, let q be an integer such that q ≥ cd for a sufficiently large constant c. Then for any x ≤ 1/2

Hq(x) = Θ(x),

and for any x = 1−Θ(1/d),

Hq(x) = 1−Θ

(
ln(q/d)

d ln q

)
.

Proof. We use the first-order Taylor approximation for sufficiently small real numbers x > 0, ln(1 + x) = x + Θ(x2) and ln(1 − x) =

−x+ Θ(x2). Note that since logq(q − 1) = 1 + ln(1−1/q)
ln q

, the first term of Hq(x) is

x ·
(

1− 1

q ln q
+ Θ

(
1

q2 ln q

))
.

For the last two terms define y = min(x, 1− x) ≤ 1/2. Since the sum of the last two terms is the same for x and 1− x, we just bound their
sum in terms of y. In this case the second term is

y − y

ln q
· ln(qy).

14 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

The third term is Θ
(
y(1−y)

ln q

)
= Θ

(
y

ln q

)
.

First, consider the case when x ≤ 1/2. In this case y = x and it can be checked all the terms are dominated by y, which implies that
Hq(x) = Θ(x) as required.

Finally, consider the case x = 1 − Θ(1/d). In this case y = 1 − x. In this case, the sum of the first two terms is dominated by the term
1− y

ln q
· ln(qy). Assuming q is at least c · d for large enough c, the − y

ln q
· ln(qy) term dominates the third term, which implies the claimed

bound.

Consider a [m, k, (1 − 1/(d + 1))m]q random linear code. By Proposition 1, the corresponding matrix will be d-disjunct. Let us now
figure out the parameters q and k in terms of m and d. It is well-known that the random code lies on the GV bound which by Lemma 3 implies
that

k = m · (1−Hq(1− 1/(d+ 1))) = Θ

(
m

log(q/d)

d log q

)
.

It is also well-known that with high probability the dual of this code lies on the GV bound; i.e., the dual distance satisfies

∆⊥ + 1 ≥ m ·H−1
q (k/m) = Θ(k),

where the equality follows from Lemma 3. Further, it is easy to show that the dual distance can be at most k (this follows e.g. from the
Singleton bound). Thus, we have

∆⊥ = Θ

(
m

log(q/d)

d log q

)
.

We now want to use Lemmas 2 and 1 to imply that the random code with high probability is heavy. To do this we need

q = Ω
(m

∆⊥

)
,

or

q = Ω

(
d log q

log(q/d)

)
.

It is not too hard to check that the above is true if we pick

q = Θ

(
d log d

log log d

)
. [4]

This along with the restrictions above implies that we have

k = Θ

(
m log log d

d log d

)
. [5]

The corresponding matrix will have m · q rows, which, by recalling that n = qk, leads to O
(
d2 logn · log d

log log2 d

)
rows.

Good Nested Distance. We now observe that the cosets of a random linear codes have good distance. In particular, note that for a random
G, the matrix Gi is also a random matrix (though with smaller number of rows). Thus, by the known results with high probability, all these
codes lie on the GV bound.

There are a couple of caveats in trying to combine the two results on heaviness and nested distance: First, while calculating the distance
of the cosets, we cannot go down to Gk because the high probability bound is not small enough to take a union bound over all the values of
i ∈ [k]. Second, even though a random linear code is heavy with high probability, it is not necessary that one of the rows of the random G will
have all non-zero values. However, we can always recompute another generator matrix G′ such that its last row is all non-zeroes. In fact, one
can argue that one can obtainG fromG′ by putting the all non-zero row at the bottom ofG and then removing one of the k rows ofG.1 Again,
while making the argument for the dual distance to be too large we cannot go down to small sub-matrices Gi. Further, to make the argument
for showing that a random linear code is heavy, we need ∆⊥ = Θ(m/d), which implies that we can only consider Gi for i ≤ ` = O(k).

The above two points imply that we can only only “recurse" up to say k/2 levels (instead of going all the k levels to go down to Gk). This
means we will obtain a strictly modularly disjunct matrix with Θ(k) levels of recursion, which for practical applications such as ours is fine.

Next, we quickly outline how one can adapt the algorithm of [16] to our case above. Note that what we need is the following for the linear
codes corresponding to the generator matrices Gk, Gk−1, . . . , GO(k): both the code and its dual has to lie on the GV bound. In particular, we
have to run O(k) “copies" of the argument in [16]. However, this will not affect the final qO(k) run time, which implies that

Theorem 2. One can construct a ((d1, . . . , d`), q, `)-strictly modularly disjunct matrix (with ` = Θ(k)) with the O
(
d2 logn · log d

log log2 d

)
number of rows in time polynomial in n, where q and k are chosen as in (4) and (5).

1Start from the bottom row of G and greedily remove the first row in G that in augmented
matrix is no longer independent of the rows below it.

Footline Author PNAS Issue Date Volume Issue Number 15

Computing the average disjunctness of Reed-Solomon Codes. In this section, we address the average disjunctness of Reed-Solomon codes,
and in particular the problem of computing it. As mentioned in the main body of the paper, disjunctness, which is a worst-case guarantee, is
often too strong in practice. To that end, we consider average disjunctness.
Definition 11 ((δ, d)-Disjunct Matrix). A t× n binary matrix M is (δ, d)-average-disjunct (for 1 ≤ d ≤ n− 1) if and only if the following is
true. Let Λ ⊂ [n] be a set of d columns chosen uniformly at random. Then with probability at least 1− δ, for any column j ∈ [n]− Λ, there
exists a row i such that the jth column has a 1 in row i and all columns in Λ have a zero in row i.

We first observe that the average disjunctess can be bounded in terms of the roots of sets of polynomials.
Proposition 6. Let Ω be a set of polynomials of degree at most k over Fq , so that |Ω| = n, and further so that Ω forms an additive subgroup
(i.e. every p1, p2 ∈ Ω, we have p1 ± p2 ∈ Ω). Let S ⊂ Fq . For a subset Λ ⊂ Ω, let roots(Λ) = {α ∈ Fq | f(α) = 0 for some f ∈ Λ}. Let
Nd(S,Ω) be the number of sets Λ ⊂ Ω \ {0} of size d so that S ⊂ roots(Λ). Then for any δ so that

δ

(
n

d

)
≥ n ·Nd(S,Ω),

RS(S,Ω) is (δ, d)-average-disjunct.

Proof. Say that Λ is bad for p ∈ Ω (with respect to S) if for all α ∈ S, there is some f ∈ Λ so that f(α) = p(α), and similarly that Λ is bad
if there exists a p for which it is bad. For a fixed S,Ω, let Np

d be the number of size d sets Λ ⊂ Ω, not containing p, so that Λ is bad for p with
respect to S. Thus, the number of sets Λ that are bad is at most

∑
p∈Ω N

p
d . By definition, RS(S,Ω) is (δ, d)-average-disjunct for any δ so that

δ

(
n

d

)
≥
∑
p∈Ω

Np
d .

We will show that in fact Np
d = Nd(S,Ω) for all p, and this will complete the proof. First, notice that by definition, Nd(S,Ω) = N0

d . Further,
if Λ is bad for 0, then Λ + p = {f + p | f ∈ Λ} is bad for p, and conversely if Λ is bad for p, then Λ− p is bad for 0. Thus, the sets Λ which
are bad for 0 are in bijection with those bad for p, for all p, which completes the proof.

Next, we address the issue of computing the average disjunctess of Reed-Solomon codes. In order to compute the results reported in
Figure 5, we use Proposition 6. Recall that in Figure 5, Ω is the set of Reed-Solomon codewords corresponding to constant, linear, and monic
quadratic polynomials, and that S is an arbitrary subset of Fq of size m = 6. We must compute the number of subsets Λ ⊂ Ω of size d, so
that the roots of the polynomials in Λ cover S. Our argument below will show that in fact this number is independent of the choice of S, and
so our bounds hold for all choices of layers.

Rather than computing the number of bad sets Λ, we will equivalently compute the probability that a random set Λ of size d is bad. We
may do this recursively. Let p(m, r, t) denote the probability that r polynomials cover an arbitrary set St of size t, where the polynomials are
drawn uniformly at random from an any set Ωm of size m so that Ωm ⊂ Ω and

{P ∈ Ω | ∃α ∈ St, P (α) = 0} ⊂ Ωm. [6]

We note that by symmetry, p(m, r, t) is well defined—that is, that it does not depend on the choice of St or Ωm, as long as they are compatible
in the sense of [6].

Then p(m, r, t) obeys the recursive relationship

p(m, r, t) =

q0p(m− 1, r − 1, t)+

q1p(m− 1, r − 1, t− 1)+

q2p(m− 1, r − 1, t− 2)

r ≥ t/2

0 r < t/2

[7]

where qi is the probability that a randomly chosen polynomial from Ωm has exactly i roots in St. Indeed, if r < t/2, then there is no way that
r polynomials of degree at most two can have between them t roots. On the other hand, if r ≥ t/2, then there are three cases: either the first
polynomial includes no roots of St, one root of St, or two roots of St, and these are the three terms in the sum.

Because the number of polynomials in Ωm with precisely two roots in S is
(
t
2

)
(indeed, this is the number of such polynomials in Ω, and

all of them are contained in Ωm because of [6]), we have

q2 =
1

m

(
t

2

)
.

Similarly,

q1 =
1

m
(qt+ t(q − t)) ,

because the polynomials in Ω that have precisely one root in St are of the form β(x−α) or (x−α)2 for α ∈ St, β ∈ Fq \ {0}, or of the form
(x− β)(x− α) for α ∈ St, β ∈ Fq \ St. Finally,

q0 = 1− q1 − q2.

Using [7], we may easily compute

Nd(S,Ω) =

(
n

d

)
p(n, d,m).

16 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

