
1 Supplement A: Proof of theorem 2.3:

Proof (Thm. 2.3):

Assume w.l.o.g. that the first m0 hypothesis are null, and the next m − m0 are the alternative. As is hinted

from the bound, the key idea used in the proof is to consider a modified (and more liberal) estimator m̂
( 61)
0 ,

which does not take into account one of the null p-values, which we assume w.l.o.g. is p1 (in practice the

researcher does not know which of the p-values are null and which are not, but assuming that at least one

p-value is null, we can still consider this hypothetical estimator as a liberal estimator for m0. In the case

where non of the p-values is null, the theorem follows immediately). We also define the following modified qk:

q
(1)
k ≡ qk

m̂
(61)
0

. From the monotonicity of m̂0 we have:

m̂
( 61)
0 ≤ m̂0, q

(1)
k ≥ qk (1)

In addition, we define the following events:

C
(1)
k ≡

{

max{j : p
(1)
(j−1) ≤ qj} = k

}

D
(1)
k ≡

⋃

j≤k

C
(1)
j =

{

p
(1)
(j−1) > qj , ∀j = k + 1, .., m

}

(2)

where p
(1)
(1) ≤ .. ≤ p

(1)
(m−1) are the ordered m − 1 p-values excluding p1.

Since C
(1)
k and m̂

( 61)
0 depend only on p2, .., pm, the following conditional independence relation holds:

C
(1)
k ⊥⊥ p1|m̂( 61)

0 (3)

Before giving our proof, we need the following two lemmas:

Lemma 1 If p1 is independent of p2..m then:

Pr(D
(1)
k |{m̂( 61)

0 , p1 ≤ q
(1)
j }) ≤ Pr(D

(1)
k |{m̂( 61)

0 , p1 ≤ q
(1)
k }), ∀j ≤ k (4)

Proof (lemma 1):

The lemma’s statement involves conditioning on p1 ≤ p. We first prove a point-wise auxiliary claim, condi-

tioning on p1 = p. Let g(p2, .., pm|m̂( 61)
0 ) be the conditional density function of p2, .., pm given m̂

( 61)
0 . Denote

fp2..m
(p) = Pr(D

(1)
k |{m̂( 61)

0 , p1 = p}). We prove below that f is monotonically non-decreasing. Let p ≤ p′.

Then:

fp2..m
(p) = Pr(D

(1)
k |{m̂( 61)

0 , p1 = p}) = Pr(

m
⋂

j=k+1

{p(1)
(j−1) > qj}|{m̂( 61)

0 , p1 = p}) =

Pr(
m
⋂

j=k+1

{p(1)
(j−1) >

qj

m̂0
}|{m̂( 61)

0 , p1 = p}) =

∫

p2..m

Pr(

m
⋂

j=k+1

{p(1)
(j−1) >

qj

m̂0(p, p2..m)
}|{p1 = p, p2..m})g(p2, .., pm|m̂( 61)

0 )dp2..dpm ≤

∫

p2..m

Pr(

m
⋂

j=k+1

{p(1)
(j−1) >

qj

m̂0(p′, p2..m)
}|{p1 = p′, p2..m})g(p2, .., pm|m̂( 61)

0 )dp2..dpm =

1



Pr(
m
⋂

j=k+1

{p(1)
(j−1) >

qj

m̂0
}|{m̂( 61)

0 , p1 = p′}) = Pr(D
(1)
k |{m̂( 61)

0 , p1 = p′}) = fp2..m
(p′) (5)

Thus f is a monotonically non-decreasing function. Therefore, the average of f over [0, p] is also non-

decreasing in p:

1

p

∫ p

0

fp2..m
(x)dx = [

1

p′
+ (

1

p
− 1

p′
)]

∫ p

0

fp2..m
(x)dx ≤

1

p′

∫ p

0

fp2..m
(x)dx + (1 − p

p′
)fp2..m

(p) ≤

1

p′

∫ p

0

fp2..m
(x)dx +

1

p′

∫ p′

p

fp2..m
(x)dx =

1

p′

∫ p′

0

fp2..m
(x)dx (6)

And this in fact shows:

Pr(D
(1)
k |{m̂( 61)

0 , p1 ≤ p}) ≤ Pr(D
(1)
k |{m̂( 61)

0 , p1 ≤ p′}), ∀p ≤ p′ (7)

From here the lemma’s claim follows by simple integration, noting that any q
(1)
j can be treated as a constant

given p2, .., pm:

Pr(D
(1)
k |{m̂( 61)

0 , p1 ≤ q
(1)
j }) =

∫

p2..m

g(p2, .., pm|m̂( 61)
0 )

1

q
(1)
j

∫ q
(1)
j

p1=0

fp2..m
(x)dp1dp2..dpm ≤

∫

p2..m

g(p2, .., pm|m̂( 61)
0 )

1

q
(1)
k

∫ q
(1)
k

p1=0

fp2..m
(x)dp1dp2..dpm = Pr(D

(1)
k |{m̂( 61)

0 , p1 ≤ q
(1)
k }) (8)

The next lemma follows the spirit of [1].

Lemma 2
k

∑

j=1

Pr(C
(1)
j |{m̂( 61)

0 , p1 ≤ qj}) ≤ Pr(D
(1)
k |{m̂( 61)

0 , p1 ≤ qk}) ∀k = 1, .., m (9)

Proof (lemma 2):

The proof is done by induction. For k = 1, eq. (9) is reduced to:

Pr(C
(1)
1 |{m̂( 61)

0 , p1 ≤ q1}) ≤ Pr(D
(1)
1 |{m̂( 61)

0 , p1 ≤ q1}) (10)

And the two quantities are equal, since by definition C
(1)
1 = D

(1)
1 . Assuming the correctness of eq. (9) for

k, we prove it for k + 1 using lemma 1:

k+1
∑

j=1

Pr(C
(1)
j |{m̂( 61)

0 , p1 ≤ qj}) ≤ Pr(D
(1)
k |{m̂( 61)

0 , p1 ≤ qk})+

Pr(C
(1)
k+1|{m̂

( 61)
0 , p1 ≤ qk+1}) ≤ Pr(D

(1)
k |{m̂( 61)

0 , p1 ≤ qk+1})+

Pr(C
(1)
k+1|{m̂

( 61)
0 , p1 ≤ qk+1}) = Pr(D

(1)
k+1|{m̂

( 61)
0 , p1 ≤ qk+1}) (11)
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By using eqs. (1, 3) and lemma 2 we are able to express the FDR as:

E

[

V

R+

]

=

m
∑

k=1

Pr(R = k)E[
V

R
|R = k] =

m
∑

k=1

1

k
Pr(R = k)

m0
∑

j=1

Pr(pi ≤ qk|R = k) =

m0

m
∑

k=1

1

k
Pr(R = k, p1 ≤ qk) ≤ m0

m
∑

k=1

1

k
Pr(R = k, p1 ≤ q

(1)
k ) =

m0

m
∑

k=1

1

k
Pr(C

(1)
k , p1 ≤ q

(1)
k ) = m0

m
∑

k=1

1

k

∫

m̂
(61)
0

Pr(C
(1)
k , p1 ≤ q

(1)
k |m̂( 61)

0 )f
m̂

(61)
0

dm̂
( 61)
0 =

m0

∫

m̂
(61)
0

q

m̂
( 61)
0

m
∑

k=1

Pr(C
(1)
k |{p1 ≤ q

(1)
k , m̂

( 61)
0 })f

m̂
(61)
0

dm̂
( 61)
0 ≤

m0

∫

m̂
(61)
0

q

m̂
( 61)
0

Pr(D(1)
m |{p1 ≤ q(1)

m , m̂
( 61)
0 })f

m̂
(61)
0

dm̂
( 61)
0 = m0

∫

m̂
(61)
0

q

m̂
( 61)
0

f
m̂

(61)
0

dm̂
( 61)
0 =

m0qE

[

1

m̂
( 61)
0

]

(12)

2 Supplement B: Designing the IBHsum estimator

There are many ways to design the estimator m̂0 such that it will satisfy Thm. 2.3. Here we choose to define

m̂0 using m̂′
0 as:

m̂0 = C(m) · min



m, (max(s(m), 2

m
∑

j=1

pj)



 (13)

Our goal is to calculate the optimal correction factors C(m) and s(m) such that m̂0 will still satisfy eq. (3.1).

Setting C = 1 and s = 0 gives the (uncorrected) unbiased estimator m̂′
0. We can bound E[ 1

m̂
(1)
0

] by neglecting

the alternative p-values:

E

[

1

m̂
( 61)
0

]

=
1

C(m)
E





1

min
[

m, max(s(m), 2
∑m

j=2 pj)
]



 ≤ 1

C(m)
E





1

min
[

m, max(s(m), 2
∑m0

j=2 pj)
]





(14)

Define the r.v. zm0 = 2
∑m0

j=2 pj and denote its density by h(m0)(zm0). Then:

E

[

1

m̂
( 61)
0

]

≤ 1

C(m)

[

1

s

∫ s

0

h(m0)
z (t)dt +

∫ m

s

h
(m0)
z (t)

t
dt +

1

m

∫ 2m

m

h(m0)
z (t)dt

]

(15)

We want to find an optimal pair (C, s) satisfying the above inequality. First, assume that we know the value of

s and find the optimal (smallest possible) C for this s. Had we known m0, and since we want E[1/m̂
( 61)
0 ] ≤ 1/m0

we would have chosen C to be:

C(m, m0, s) = m0

[

1

s

∫ s

0

h(m0)
z (t)dt +

∫ m

s

h
(m0)
z (t)

t
dt +

1

m

∫ 2m

m

h(m0)
z (t)dt

]

(16)

Since in the above equation m0 is unknown we must maximize over all of its possible values C(m, s) ≡
max
m0

C(m, m0, s). We are now left with the choice of s. As we increase s from zero, the maximal C decreases

but at some point it remains constant, since when m0 = m our bound for C is independent of s - we set this
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Figure 1: An example of the dependency of C(m, m0, s) on m0 for different values of s. The value of s affects

both the location and height of the left maximum, whereas the right maximum (at m0 = m) is independent of

s. We choose s such that the maximum of C is the smallest possible, and take the minimal s which achieves

this. This gives s = 98 for m = 500 and s = 147 for m = 1000.

point as the optimal s, s(m) = min{s : s = argmin
s′∈[0,m]

[C(m, s′)]}. Fig. 1 presents an example for the dependency

of C on the m0/m and s.

Using numerical integration we calculate C(m0) for fixed m, its behavior for different values of m and s

is presented in Fig. 1. The value of s controls the location of the left maximum and we choose s to be such

that the maximal C is minimal, this happen when the left maximum is the same as the value at m0/m = 1.

The resulting s(m), C(m) are presented in Fig. 2a and b, and several values of interest are listed in table 2.

We also provide a MATLAB function for computing these values in the companion code.

In the above formula for C(m, m0) the density h
(m0)
z (z) is the density of the uniform sum distribution.

Since calculation of the above integrals with the exact uniform sum distribution cause numerical difficulties we

approximated it by a Gaussian distribution. For large values of m, the approximation converges to the exact

distribution according to the central limit theorem. For small values of m (m ≤ 40), we were able to compare

the C(m) values calculated by the exact uniform-sum distribution with the C(m) which were calculated by

the Gaussian approximation. This comparison shows that Capproximate(m) > Cexact(m), and that the rate

of convergence is faster that 1/m1.1, (see Fig. 2). Thus calculating C(m) using the normal approximation is

conservative (gives higher C) and as expected converges to the values of C calculated by the exact distribution.
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Figure 2: Difference between C(m) calculated using the normal approximation and the C(m) calculated by

the exact uniform sum distribution. The difference is always positive (thus the approximation is conservative)

and the rate of convergence is faster than 1/m.
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m C s

10 1.096981 5

100 1.030604 35

200 1.019915 55

300 1.015671 72

400 1.013267 86

500 1.011709 98

600 1.010554 109

700 1.009688 119

800 1.009 129

900 1.008441 138

1000 1.007968 147

2000 1.00549 217

3000 1.004426 272

4000 1.003808 318

5000 1.003386 359

6000 1.003085 396

7000 1.002844 430

8000 1.002654 462

9000 1.002502 491

10000 1.002366 521

15000 1.001922 645

20000 1.001662 750

25000 1.001482 843

30000 1.001349 928

40000 1.001168 1077

50000 1.001041 1211

60000 1.000949 1332

70000 1.000879 1439

80000 1.000821 1543

90000 1.000774 1641

100000 1.000734 1731

Table 1: Values of correction factors C, s for selected values of m
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3 Supplement C: Proof of claim 3.1

Proof (claim 1):

The proof is accomplished by bounding E[1/m̃
( 61)
0 ] and using Thm. 2.3.

For c ≥ 0, the function φ(x) = 1/(x + c) is convex. Therefore, we can use Jensen’s inequality with this

function and get:

E[1/m̃
( 61)
0 ] = E

[ 1

2 − ∑m
i=2 log(1 − pi)

]

=

∫

p2..m

fp2..m
(p2..m)dp2..m

1

2 − ∑m
i=2 log(1 − pi)

=

∫

p2..m

fp2..m
(p2..m)dp2..m

1

E[− log(1 − p0) − log(1 − p1)] −
∑m

i=2 log(1 − pi)
≤

∫

p2..m

fp2..m
(p2..m)dp2..mE

[ −1
∑m

i=0 log(1 − pi)

]

= E
[ −1
∑m

i=0 log(1 − pi)

]

≤

E
[ −1
∑m0

i=0 log(1 − pi)

]

= E
[ −1
∑m0

i=0 log pi

]

(17)

where p0 ∼ U [0, 1] is an auxiliary random variable defined to be independent of p1..m.

Define Ym0 =
∏m0

i=0 pi. Since p0..m0 are i.i.d. U [0, 1], Ym0 has the following density function:

hYm0
(t) =

(−1)m0

m0!
(log t)m0 (18)

Define also Xm0 = −2 logYm0 , then HXm0
(t) = 1 − HYm0

(e−t/2) and

hXm0
(t) =

e−t/2

2
hYm0

(e−t/2) =
e−t/2tm0

2m0+1m0!
(19)

Therefore Xm0 is a chi-square r.v., Xm0 ∼ χ2(2m0 + 2). Using this fact, we get

E[1/m̃
( 61)
0 ] ≤ E[2/Xm0 ] =

∫ ∞

0

e−t/2tm0

2m0m0!
· 1

t
dt =

1

m0

∫ ∞

0

e−t/2tm0−1

2m0(m0 − 1)!
dt =

1

m0
(20)

Therefore, according to Thm. 2.3, we immediately get:

FDR ≤ m0q
1

m0
= q (21)

4 Supplement D: Proof of monotonicity theorem

Proof (Thm. 4.1):

Assume w.l.o.g. that the first m0 hypothesis are null, and the next m − m0 are the alternative. For each

procedure, R is some function of ~p = (p1, .., pm) which depends only on the order statistics ~p() = (p(1), .., p(m)).

We therefore need to prove:

∫

~p

fp1...m
(~p)d~p

V1(~p)

R+
1 (~p)

≤
∫

~p

fp1...m
(~p)d~p

V2(~p)

R+
2 (~p)

(22)

The Vi’s depend on the exact realization ~p while the Ri’s depend only on the order statistics ~p(), and thus

we can write equivalently:

∫

~p()

g(~p())d~p()

E[V1(~p)|~p()]

R+
1 (~p())

≤
∫

~p()

g(~p())d~p()

E[V2(~p)|~p()]

R+
2 (~p())

(23)
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Where g is the joint density of the order statistics ~p(), given by:

g(~p()) =
∑

σ∈Sm

fp1...m
(σ−1(~p())) (24)

That is, g is obtained by summing over all m! permutations σ on m elements in the symmetric group

Sm, each permutation σ transferring different configuration of the pi’s into the same order statistics vector

~p() = σ(~p) = (pσ1 , .., pσm
), and thus ~p is given by applying the inverse permutation σ−1 to ~p(). Under the

assumption that the p-value are independent and the null p-values are U [0, 1], g can be written as:

g(~p()) =
∑

σ∈Sm

fp1...m
(σ−1(~p())) =

∑

σ∈S(m)

[

m
∏

i=m0+1

f(p(σ−1
i

)
]

(25)

In order to show that the inequality (23) holds for the integral, it is enough to show it for each realization

of the order statistics ~p(). Thus, we want to show:

E[V1(~p)|~p()]

R+
1 (~p())

≤ E[V2(~p)|~p()]

R+
2 (~p())

, ∀~p() (26)

Or:

E[V1|~p()] ≤
R+

1 (~p())

R+
2 (~p())

E[V2|~p()], ∀~p() (27)

It is enough to show that eq. (27) holds for the case R1(~p) = k, R2(~p) = k + 1 for some 0 ≤ k ≤ m − 1,

and then it will follow by induction for the case R2(~p) − R1(~p) > 1 . Define the r.v. xj(~p) = 1{p(j)null}, i.e.

the indicator for the event that the j-th order statistic is null.

xj(~p) =







1 σj ≤ m0

0 σj > m0

(28)

where σ here is the permutation transferring ~p to ~p(). We thus need to prove:

E[V |k; ~p()] =

k
∑

j=1

E[xj(~p)|~p()] ≤
k

k + 1

k+1
∑

j=1

E[xj(~p)|~p()] =
k

k + 1
E[V |k + 1; ~p()] (29)

It is therefore enough to prove

E[xj(~p)|~p()] ≤ E[xk+1(~p)|~p()], ∀j < k + 1 (30)

or in other words, that E[xj |~p()] is monotonically non-decreasing in j. We will show that E[xk|~p()] ≤
E[xk+1|~p()] and then the claim follows again by induction.

E[xk(~p)|~p()] =
∑

σ∈Sm

Pr(~p = σ−1(~p())|~p())xk

(

σ−1(~p())
)

=
1

Z(~p())

∑

σ∈Sm

f
(

σ−1(~p())
)

xk

(

σ−1(~p())
)

=

=
1

Z(~p())

∑

σ∈Sm

[

m
∏

i=m0+1

f(p(σ−1
i

))
]

1{σk≤m0} (31)

Where Z(~p()) is a normalization constant depending on the order statistics, and we have used the independence

of all p-values. For each permutation on m elements σ, we define σ′ to be the permutation identical to σ,

except that σk and σk+1 are swapped, i.e. σ′
k = σk+1, σ

′
k+1 = σk. Then we can write:

E[xk|~p()] − E[xk+1|~p()] =

8



1

Z(~p())

∑

σ∈Sm

{

[

m
∏

i=m0+1

f(p(σ−1
i

))
]

1{σk≤m0} −
[

m
∏

i=m0+1

f(p(σ′−1
i

))
]

1{σ′
k+1≤m0}

}

(32)

The usage of the swapped permutation in the above sum makes the value of the two indicators identical,

and thus we sum only over permutations σ such that σk ≤ m0, i.e. when p(k) is null. In the case where p(k+1)

is also null (i.e. σk+1 ≤ m0) the difference is zero and we can omit this case from the sum, while in the case

where p(k+1) is alternative (σk+1 > m0) one element in the product is different and we get:

E[xk|~p()] − E[xk+1|~p()] =
1

Z(~p())

∑

σ∈Sm

1{σk≤m0<σk+1}

[

m
∏

i=m0+1

f(p(σ−1
i

))
][

1 − f(p(k))

f(p(k+1))

]

≤ 0 (33)

where the last inequality follows from the monotonicity assumption on f(p).

5 Supplement E: Simulations study details

A simulation study was done in order to determine the performance of the proposed procedure and compare

it to existing procedures. We generated multivariate Gaussian random variables (and corresponding p-values)

in similar to [2] and previous works. First randomize a vector of i.i.d. r.v.s. Y1, , , Ym+1 ∼ N(0, 1); then,

given the parameters m, m0, µ1 and ρ, build the vector X1, , , Xm (which is the test statistics vector) as

follows: the first m0 elements are Xi =
√

ρYm+1 +
√

1 − ρYi, and the remaining m − m0 elements are Xi =
√

ρYm+1 +
√

1 − ρYi + µ1. Here m0/m is the fraction of true hypotheses, ρ is a dependency factor (the

correlation coefficient between Xi and Xj for i 6= j), and µ1 is the mean of the false hypotheses test statistics

(the signal intensity). The resulting vector X is such that its first m0 variables come from the N(0, 1)

distribution, and the remaining m − m0 variables come from N(µ1, 1) distribution, where for any Xi and Xj

(either both, one or none of them are null) their correlation coefficient is ρ. The p-values were calculated using

2 tailed z-test (p = 2Φ(−|x|)). The number of simulations for each case was 50000, which provided highly

accurate and reproducible results. Since the simulation results depend on several parameters, m0/m, µ1, ρ, m,

we have chosen to vary two parameters at a time, and present the results using isolines of the actual FDR

(or any other quantity). These isoline plotted in Fig 3 describe the performance of the IBHsum and IBHlog

procedures, respectively, on simulated data in the (m0/m, µ1) plane.
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Figure 3: Isolines of E(V/R+), measured for the IBHlog procedure by simulations, presented in the (µ1, m0/m)

plane. The solid lines are for the step-up procedure and the dashed lines for the step-down procedure. (a) and

(c) are for the independent case (ρ = 0). (b) and (d) are for the positive dependency case ρ = 0.8. The FDR

levels are q = 0.05 in (a),(b) and q = 0.2 in (c),(d). In (b) we find E(V/R+) > 0.05 for large µ1, in violation

of the bound q = 0.05. In similar to the behavior for IBHsum, the step-up and step-down procedures tend

to coincide under dependency, while for independent p-values the step-down procedure is more conservative,

especially for weak signal (small µ1).
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Figure 4: Results obtained for synthetic data with m = 500 hypotheses; m0 was varied, the FDR was set

at q = 0.2, the mean of the distributions P1 was µ1 = 3.5 and the data were drawn either with covariance

ρ = 0 [(a), (c) and (e)] or ρ = 0.8 [(b), (d) and (f)]. Six methods were compared: oracle (ORC), BH95,

BKY, STS and our two IBH procedures (in a step down manner), showing E(V/R+) in (a) and (b), the power

E(S)/m1 in (c) and (d), and the standard deviation (st.d.) of V/R+ in (e) and (f), for the independent case

and positively dependent cases, respectively.
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Figure 5: Results obtained for synthetic data with m = 500 hypotheses, (a) and (b) showing the actual FDR

levels (E(V/R+)), versus the correlation between test statistics (ρ); (c) and (d) showing the actual power

(E(S)/m1), versus the correlation between test statistics (ρ). The FDR was set to q = 0.05, the fraction of

true hypotheses set to m0/m = 0.7 in (a)-(c) or m0/m = 0.9 in (b)-(d), the mean of the distributions P1

was µ1 = 1 (weak signal). Seven methods were compared: Oracle (ORC), BH95, BKY, STS (λ = 0.5), STS

(λ = 0.1) and our two IBH procedures (in a step down manner).
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Figure 6: Results obtained for synthetic data with m = 500 hypotheses, (a) and (b) showing the actual FDR

levels (E(V/R+)), versus the correlation between test statistics (ρ); (c) and (d) showing the actual power

(E(S)/m1), versus the correlation between test statistics (ρ). The FDR was set to q = 0.05, the fraction of

true hypotheses set to m0/m = 0.7 in (a)-(c) or m0/m = 0.9 in (b)-(d), the mean of the distributions P1 was

µ1 = 2 (intermediate signal). Seven methods were compared: Oracle (ORC), BH95, BKY, STS (λ = 0.5),

STS (λ = 0.1) and our two IBH procedures (in a step down manner).

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12
0.13
0.14
0.15
0.16

(a)

E
(V

/R
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

(c)

E
(S

)/
m

1

ρ

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12
0.13
0.14
0.15
0.16

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

0.85

0.9

0.95

(d)

ρ

ORC

BH95

BKY

STS(λ=0.5)

STS(λ=0.1)

IBHsum(step−down)

IBHlog(step−down)

Figure 7: Results obtained for synthetic data with m = 500 hypotheses, (a) and (b) showing the actual FDR

levels (E(V/R+)), versus the correlation between test statistics (ρ); (c) and (d) showing the actual power

(E(S)/m1), versus the correlation between test statistics (ρ). The FDR was set to q = 0.05, the fraction of

true hypotheses set to m0/m = 0.7 in (a)-(c) or m0/m = 0.9 in (b)-(d), the mean of the distributions P1

was µ1 = 4 (strong signal). Seven methods were compared: Oracle (ORC), BH95, BKY, STS (λ = 0.5), STS

(λ = 0.1) and our two IBH procedures (in a step down manner).
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Figure 8: Results obtained for synthetic data with m = 500 hypotheses, (a) and (b) showing the actual FDR

levels (E(V/R+)), versus the correlation between test statistics (ρ); (c) and (d) showing the actual power

(E(S)/m1), versus the correlation between test statistics (ρ). The FDR was set to q = 0.2, the fraction of

true hypotheses set to m0/m = 0.7 in (a)-(c) or m0/m = 0.9 in (b)-(d), the mean of the distributions P1

was µ1 = 1, (weak signal). Seven methods were compared: Oracle (ORC), BH95, BKY, STS (λ = 0.5), STS

(λ = 0.1) and our two IBH procedures (in a step down manner).
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Figure 9: Results obtained for synthetic data with m = 500 hypotheses, (a) and (b) showing the actual FDR

levels (E(V/R+)), versus the correlation between test statistics (ρ); (c) and (d) showing the actual power

(E(S)/m1), versus the correlation between test statistics (ρ). The FDR was set to q = 0.2, the fraction of

true hypotheses set to m0/m = 0.7 in (a)-(c) or m0/m = 0.9 in (b)-(d), the mean of the distributions P1 was

µ1 = 2, (intermediate signal). Seven methods were compared: Oracle (ORC), BH95, BKY, STS (λ = 0.5),

STS (λ = 0.1) and our two IBH procedures (in a step down manner).
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Figure 10: Results obtained for synthetic data with m = 500 hypotheses, (a) and (b) showing the actual FDR

levels (E(V/R+)), versus the correlation between test statistics (ρ); (c) and (d) showing the actual power

(E(V/R+)), versus the correlation between test statistics (ρ). The FDR was set to q = 0.2, the fraction of

true hypotheses set to m0/m = 0.7 in (a)-(c) or m0/m = 0.9 in (b)-(d), the mean of the distributions P1

was µ1 = 4, (strong signal). Seven methods were compared: oracle (ORC), BH95, BKY, STS (λ = 0.5), STS

(λ = 0.1) and our two IBH procedures (in a step down manner).

17


