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The steep rise in availability and usage of high-throughput tech-
nologies in biology brought with it a clear need for methods to control
the False Discovery Rate (FDR) in multiple tests. Benjamini and
Hochberg (BH) introduced in 1995 a simple procedure and proved
that it provided a bound on the expected value, FDR ≤ q. Since
then, many authors tried to improve the BH bound, with one ap-
proach being designing adaptive procedures, which aim at estimating
the number of true null hypothesis in order to get a better FDR
bound. Our two main rigorous results are: (i) a theorem that pro-
vides a bound on the FDR for adaptive procedures that use any
estimator for the number of true hypotheses (m0), (ii) a theorem
that proves a monotonicity property of general BH-like procedures,
both for the case where the hypothesis are independent. We also pro-
pose two improved procedures for which we prove FDR control for
the independent case, and demonstrate their advantages over sev-
eral available bounds, on simulated data and on a large number of
gene expression datasets. Both applications are simple and involve
a similar amount of computation as the original BH procedure. We
compare the performance of our proposed procedures with BH and
other procedures and find that in most cases we get more power for
the same level of statistical significance.

1. Introduction. The main goal of statistical comparisons (tests) is to calculate the level of
statistical significance at which a given null hypothesis is rejected on the basis of available data.
Researchers use this tool in order to present their findings and support their conclusions. Uncontrolled
application of single inference procedures in a multiple comparison setting can cause a high false
positive rate. Special multiple comparison procedures are used in order to control the probability of
committing such a type I error in families of comparisons.
The need for improved control over the multiplicity effect in biological experiments became acute
in the nineties, when the amount of data that could be measured and stored increased thousands
fold. Many new experimental techniques, which allowed taking a large number of measurements
simultaneously were developed, along with improved data acquisition and storage capabilities.
For example, in the case of gene expression microarray measurements, a typical aim is to identify the
genes whose expression levels differentiate between healthy (type A) and diseased (type B) subjects.
Genes are tested one by one for differential expression; the formal way to do this is by posing
several thousand null hypotheses. A null hypothesis states that a particular variable (e.g. expression
level of gene i) is sampled from the same distribution for both types A,B; one is interested in
identifying variables (genes) for which the null hypothesis is rejected (i.e. genes whose expression
does differentiate between types A,B). Such a finding is referred to as a discovery. Denote by m the
total number of hypotheses (e.g. the number of genes whose expression levels were measured), and
assume that the null hypothesis is true for m0 out of the m (i.e. m0 genes’ expression levels do not
differentiate the two types). For m1 = m −m0 the null hypothesis is false (the expression levels of
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types A and B are sampled from different distributions). A statistical test is performed independently
for each variable, producing a p-value pi, i = 1, 2, ...m. On the basis of some thresholding operation
on the pi’s, the null hypothesis is rejected for R tests. The decision to reject (or not) can be correct
or false; When the null hypothesis is rejected for one of the m0 variables for which it is actually true,
we have a ”false discovery” (type I error). Table 1 presents the possible categories to which rejected
and non-rejected hypotheses can belong, and the number of hypotheses in each category.

”ground truth” non-rejected rejected total
hypotheses hypotheses

null hypothesis is true U V m0

null hypothesis is false T S m1

total m−R R m
Table 1

Numbers of true/false decisions taken when testing m null hypotheses

Out of the R rejected hypotheses the fraction V/R is falsely rejected. The expected value of this
fraction was termed by [4], (referred to as BH95) as the False Discovery Rate (FDR),

FDR ≡ E

(

V

R

∣

∣

∣

∣

R > 0

)

Pr(R > 0) ≡ E

(

V

R+

)

(1.1)

where here and later in the paper the term R+ ≡ max(R, 1) is used for brevity. It is required since
V/R is undefined when R = 0 and thus this case should be treated separately - we follow [4] and
replace V/R by 0 in this case. The original BH95 procedure to control the FDR is given as follows:

1. Denote by q the desired level, 0 < q ≤ 1, of the FDR and define the following set of constants:

αi =
iq

m
, i = 1, 2, ...,m(1.2)

2. Sort the p-values pi and re-label the hypotheses accordingly, p(1) ≤ p(2) ≤ .... ≤ p(m), such that
(i) is the index of the hypothesis with the i-th smallest p-value.

3. Identify R as

R = max
{

i : p(i) ≤ αi

}

(1.3)

If no such R ≥ 1 exists, no hypothesis is rejected; otherwise reject all R hypotheses (i) =
1, 2, ...R.

This procedure has a simple graphical implementation, depicted in Fig. 1. It is referred to in BH95
as ”step-up”; in general there could be more than one intersection point (of the p(i) and αi lines), in
which case the step-up procedure identifies the intersection with the largest p-value as R, whereas
the more conservative ”step-down” procedure identifies the lowest one, replacing eq. (1.3) by

R = min
{

i : p(i) > αi

}

− 1(1.4)

The bound

(1.5) FDR = E

(

V

R+

)

≤
m0

m
q

was proved by BH95 for independent tests, and by [6] for a certain type of ’positive dependency’ called
PRDS (Positive Regression Dependency on each one from a Subset). The value of m0 is unknown to
the researcher, but since m0 ≤ m, this procedure leads to the bound:

(1.6) FDR = E

(

V

R+

)

≤
m0

m
q ≤ q
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Fig 1. Typical examples for the use of the BH95 and our IBH procedures, for a desired FDR value of q = 0.1. The
sorted p-values (solid line), the αi of eq. (1.2) (dashed line) and the γi from eq. (2.1) (dot-dashed line for IBHsum and
solid light for IBHlog) are shown, for (a) leukemia data from [1] and (b) breast cancer data from [18]. As indicated
in (a), the number of rejections is determined for each procedure by locating the (maximal) value i = R at which the
corresponding lines intersect p(i), (the vertical lines mark the intersection point between the lines).

Clearly, had we known m0, we could have defined a different set of constants (compare to eq. (1.2))

(1.7) α′
i =

iq

m0

and defining

R′ = max
{

i : p(i) ≤ α′
i

}

(1.8)

would have obtained a larger number R′ ≥ R of rejected hypotheses (still with FDR ≤ q), than
the number R given by the original BH95 procedure, which used m as an upper-bound on m0.
This procedure, based on knowledge of m0, is called ”oracle” (ORC), see [11]. Subsequently various
improved (also called ’adaptive’) procedures were proposed, based on the idea of estimating the
unknown m0 in order to get a more accurate handle on the FDR. These procedures can be divided
into two major classes:

1. Procedures for local FDR estimation: This approach, previously suggested and applied by
[30],[24],[20], can be used when one has an estimator m̂0 of m0, that satisfies:

m0 ≤ E(m̂0) ≤ m(1.9)

In procedures of this type one can write the local FDR (lFDR) estimate as (see [20]):

t(i) =
v̂(p(i))

F̂ (p(i))
(1.10)

where, p(i) is the ordered p-value, v̂(α) is the estimator for the type I errors (in the rejection

region), and F̂ (α) is the estimator for the probability Pr(p ≤ α) (often estimated by R(p(i))/m).
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Since for v̂(α) most methods use:

v̂(α) = α
m̂0

m
(1.11)

any estimator that satisfies eq. (1.9) can provide an improved estimator and yield:

α
m0

m
≤ E(v̂(α)) = α

E(m̂0)

m
≤ α(1.12)

This approach is the preferred one in many biological contexts, when the investigator wishes
to control R, the number of discoveries made (e.g. differentiating genes to be used in further
experiments).

2. Procedures for FDR control: In this approach, one wishes to control the FDR at a preset level
q. This is achieved by defining γi = iq/m̂0 to be used in the same way as αi and α′

i (see eq. (1.2)
and eq. (1.7) ), leading typically to a larger number R′ of rejected hypotheses (compared to
BH95), with the FDR still being bound by the desired value q. The advantage of this procedure
(presented in Sec. 5) is that one retains control of q, the desired level of FDR.

We present in this paper two estimators, m̂0 and m̃0, that satisfy eq. (1.9), and hence can be
used trivially for FDR estimation. As opposed to FDR estimation, proving control of the FDR is
far more involved, and constitutes a significant portion of this paper. We provide two new proven
procedures for control of the FDR. We first prove control for these procedures when employed in a
step-up manner. Then, by using a new general monotonicity result for the FDR which we derive,
we show that the step-down versions of our procedures also control the FDR. Designing better
procedures for FDR estimation and control has drawn a great deal of attention in recent years, as
is demonstrated by the abundance of proposed procedures and many theoretical and experimental
papers. However, as far as we know only for a few such procedures has control of the FDR been
rigorously established: the original BH95 procedure [4], the two-stage and multiple-stage adaptive
BH procedures [5] (we refer to the latter as BKY), and Storey’s procedure [24] (referred to as STS).
All these procedures (except, of course, BH95) claim to give improved power over BH95. All are
derived from a better estimation of m0. Almost all proofs for FDR control assume independence of
the p-values (with the notable exception [6]). Thus, far less is known about the behavior of FDR
procedures under dependency, where most of our understanding comes from simulation studies. In
addition, the FDR, by its definition (eq. (1)), is an expected value. However, the fraction of the false
discoveries V/R+ is a random variable. While the mean value (FDR) was extensively studied, far less
attention has been devoted in the literature to the behavior of this random variable, its variance and
entire distribution. We therefore perform simulations whose purposes are: a. To study the behavior
of the various procedures under dependence, where analytical results are harder to establish, and b.
study the distribution of the fraction of false rejections (V/R+), which has implications on possible
violation of the bound for a particular realization. Our simulations provide a comparison of our
new procedures to the known ones mentioned above and we show that our new procedures compare
favorably in most cases of interest. We analyze simulated and real data, and show that for both the
new procedures almost always reject more hypotheses than BH95, while maintaining control even
under dependence, and we therefore refer to these procedures as ’Improved BH’ (IBH). The real
data which we use is gene expression data obtained from various cancer studies, and we show that
our new procedures allow rejection of more hypotheses at a given confidence level and thus increase
discovery power.

A Matlab package implementing our proposed procedures, including examples and datasets ana-
lyzed in the paper is provided in the supplementary information and in the following URL:
http://www.broadinstitute.org/~orzuk/matlab/libs/stats/fdr/matlab_fdr_utils.html

 http://www.broadinstitute.org/~orzuk/matlab/libs/stats/fdr/matlab_fdr_utils.html 
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2. Preliminaries and theorem on control. In this section we present a theorem which pro-
vides a general way to build an improved bound for controlling the FDR using an estimator for m0.
Two examples of practical implementation of the theorem lead to useful procedures described in
the next section. The working assumptions we use here is that the p-values are independent. The
theorem is not proven for dependent variables but our simulations indicate that in most cases we
do control the FDR even under dependence (see Sec. 5). Our first step is defining mathematically
a family of estimators m̂0 for m0. We define a general modified BH procedure, in which any one of
these estimators is used by replacing m in the original BH95 procedure (see eqs. (1.2,1.3)) by m̂0.
Throughout this section and the rest of the paper we denote for convenience pi..j ≡ pi, .., pj . We also
denote ~p = (p1, .., pm) the vector of all p-values.

Definition 2.1. An estimator for m0 is a family of functions m̂0 ≡ m̂
(m)
0 : [0, 1]m → R, m̂0 ≡

m̂0(~p). We usually omit the index (m) as it is obvious from the context. We say that m̂0 is a monotonic
estimator if it satisfies:

1. m̂
(m)
0 (p1, .., pi, .., pm) ≥ m̂

(m)
0 (p1, .., p

′
i, .., pm), ∀ pi ≥ p′i, i = 1, 2, , ,m, m ≥ 1

2. m̂
(m)
0 (p1, .., pi, .., pm) ≥ m̂

(m−1)
0 (p1, .., pi−1, pi+1, .., pm), ∀ i = 1, 2, , ,m, m ≥ 2

Definition 2.2. Assume w.l.o.g that we have m hypotheses the first m0 of which are null. Let
~p = (p1, .., pm) be the corresponding p-values. The modified step-up BH procedure with estimator m̂0

is defined as follows:

1. Compute m̂0 ≡ m̂0(~p).
2. For each i define:

γi =
iq

m̂0
(2.1)

3. Order the p-values in an increasing order: p(1) ≤ .. ≤ p(m).
4. Let R = max{i : p(i) ≤ γi}, and reject the hypotheses (1), (2), ...(R) (If no such R exists, don’t

reject any hypothesis).

This procedure is similar to the original BH95 procedure, with the addition initial step of estimating
m0, and the different set of constants used to determine R. The modified step-down BH procedure is
defined in the same way, except that in step 4 we take R = min

{

i : p(i) > αi

}

− 1.

The next theorem gives the bound on the FDR for the above procedure under the above assump-
tions (a very similar result was given by [5]):

Theorem 2.3. Let m̂0 ≡ m̂0(~p) be a monotonic estimator for m0. Consider the modified step-up

BH procedure defined above. Let m̂
(61)
0 (~p) ≡ m̂0(p2, .., pm) be the same estimator, but disregarding the

first (null) p-value p1. Assume that the null p-values are i.i.d. U [0, 1]. Then the procedure satisfies:

(2.2) FDR = E

[

V

R+

]

≤ m0qE

[

1

m̂
(61)
0

]

Here p1 is a representative of one of the true null p-values. The modified estimator m̂
(61)
0 which

excludes p1 cannot be implemented in practice, as the researcher does not know which of the p-values
are null, but for any estimator m̂0 we can still consider this hypothetical estimator (in similar vain
to the ’oracle’ procedure sometimes considered in the literature) and study it’s statistical properties
- it only serves for an hypothetical auxiliary procedure which is used in the proof of the theorem,
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and the theorem applies to the practical original procedure with the estimator m̂0 which does use
p1 (as well as all other p-values). The proof of Thm. 2.3 is given in Supplement A for completeness.
In general, a direct computation, or bounding of the FDR for a given procedure is a demanding
task, which depends heavily on the procedure’s details, and suffers from complicated dependence
on the rejection of different hypotheses, reflected in the computation of E[V/R+] (this is true even
if the p-values themselves are independent) and therefore there is no general way to prove FDR
controlling properties of various procedures. The advantage of Thm. 2.3 is that it provides a direct
method for proving control for a wide class of procedures, by simply bounding the reciprocal mean
of the estimator for m0. In the next section we use this theorem to prove control of the FDR for
two procedures, based on different estimators m̂0, and m̃0 which we propose. We are not aware of a
direct way for proving control of the FDR for these procedures, thus demonstrating the power and
generality of the theorem.

3. The proposed procedures. In this section we propose two FDR controlling procedures.
We show that they achieve direct control of q, the desired value of the FDR, while producing a list
of R′ discoveries satisfying almost always R′ ≥ R, the corresponding BH95 value. The procedures
are particular cases of Def. 2.2. According to Thm. 2.3 any estimator that satisfies our monotonicity

assumption bounds the FDR by FDR ≤ m0qE[1/m̂
(61)
0 ]. Therefore, in order to show that the FDR is

controlled, it suffices to bound E[1/m̂
(61)
0 ]. In particular, if we want to achieve a certain FDR control

level q, we need to verify that

E

[

1

m̂
(61)
0

]

≤
1

m0
(3.1)

Our first estimator is based on

m̂′
0 = 2

m
∑

j=1

pj(3.2)

m̂′
0 was used by [19] for estimation but without proving control of the FDR. The second estimator

is based on

m̃′
0 = −

m
∑

i=1

log(1− pi)(3.3)

For both estimators we first show that eq. (1.9) is satisfied and hence both can be used for FDR
estimation. Next we describe the procedure to be used for control of the FDR, which is proved by
showing, for slightly modified versions of both estimators (see blow), m̂0 and m̃0 that the bound eq.
(3.1) is satisfied. Both m̂′

0, m̃
′
0 are monotonic estimators according to Def. 2.1. Our claims are:

1. Both estimators are conservative, i.e. their expectation is at least m0. Moreover, as the statis-
tical power of each individual test increases, and the pi of the alternative hypothesis approach
zero, our estimators converge (in expectation) to the true value of m0.

2. Both procedures control the FDR - for the list of R′ discoveries we have FDR ≤ q.
3. In nearly all cases of interest the number of discoveries obtained by our procedures exceeds

the number obtained (for the same value of q) by the BH95 procedure, i.e. R′ ≥ R. This holds
since nearly always m̂0 ≤ m (exceptions occur when there are almost no false hypotheses, i.e.
m and m0 are very close).

A reasonable requirement from an estimator for m0 should be that it is conservative (i.e. larger
than m0 in expectation). We would also like our estimator to be (approximately) unbiased, at least
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when all hypotheses are null. For otherwise we will get a systematic over-estimation of m0 and a
corresponding under-estimation of the FDR. Finally, a desirable property is being asymptotically
unbiased - that is, even when there are non-null hypothesis, when the sample size of the individual
tests grows to infinity, we would want the estimator to converge, on expectation, to the true value
m0. These properties were dealt with in [19], where it was shown that m̂′

0 indeed satisfy them. Here
we show them for both our procedures:

Claim 3.1. (a.) Both estimators are conservative:

(3.4) E[m̂′
0], E[m̃′

0] ≥ m0

(b.) Assume that the sample size of all tests goes to infinity, and thus E[pi] → 0 for i = m0+1, ..,m.
Then both estimators converge in expectation to m0:

(3.5) E[m̂′
0] → m0, E[m̃′

0] → m0

Proof:

(a.)

(3.6) E[m̂′
0] = 2

m
∑

j=1

E[pj ] = 2(

m0
∑

j=1

E[pj] +

m
∑

j=m0+1

E[pj ]) = m0 + 2

m
∑

j=m0+1

E[pj] ≥ m0.

E[m̃′
0] =

m
∑

j=1

E[log(1− pj)] =

m0
∑

j=1

E[log(1− pj)] +

m
∑

j=m0+1

E[log(1− pj)] =

= m0 +
m
∑

j=m0+1

E[log(1− pj)]) ≥ m0

(3.7)

(b.) From the two equations above it is clear that as all the alternative E[pj ] approache zero, the
expectation of both estimators converges to m0.

�

In order to show control of the FDR using Thm. 2.3, we have to apply small corrections to both
estimators, turning them into conservative estimators (i.e. over-estimating m0). This is due to two

reasons: the first is that the bound on the FDR given in Thm. 2.3 uses m̂
(61)
0 (rather than m̂0) and

thus we ’lose’ one of the p-values and need to correct for that. The second reason is that m̂
(61)
0 appears

in the denominator, and its fluctuations have asymmetric influence on the FDR bound. This can be

illustrated by using Jensen’s inequality which gives E[1/m̂
(61)
0 ] ≥ 1/E[m̂

(61)
0 ], thus showing that an

unbiased estimator for m0 will typically show a bias when its reciprocal is used. Nevertheless, we
show that these two effects can be overcome by applying a small correction, which becomes negligible
as the number of hypotheses go to infinity.

3.1. The IBHsum procedure. Our first estimator is based on m̂′
0 (see eq. (3.2)) that was also

used by [19] but only for estimation and not for control. Since for the m0 variables for which the null
hypothesis holds we have ptruei ∼ U [0, 1] ⇒ E[ptruei ] = 1

2 , it is trivial to see that E[m̂′
0] ≥ m0. To show

that E[m̂′
0] ≤ m, we have to make a further assumption regarding the alternative p-values pfalsei : We

denote the distribution of pfalsei by f false
i , i.e. pfalsei ∼ f false

i . If all the fi’s are stochastically smaller [2]

than the uniform distribution, (f false
i ≤st U [0, 1]), we have E[pfalsei ] ≤ 1

2 which immediately implies
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E[m̂′
0] ≤ m, ( a probability density function f is said to be stochastically smaller than a probability

density function g, f ≤st g, if F (x) =
∫ x

−∞
f(t)dt ≥ G(x) =

∫ x

−∞
g(t)dt ∀x ∈ (−∞,∞) [2] ).

We introduce the following modified estimator:

m̂0 = C(m) ·min
[

m,max
(

s(m), m̂′
0

)]

,(3.8)

where C(m), s(m) are universal correction factors that ensure that the condition (3.1) is satisfied
(for details see Supplement B). The correction factors were computed numerically and are presented
in Fig. 2. When m → ∞, C → 1 and s/m → 0, and therefore the corrections become negligible and
the estimator m̂0 reduces to m̂′

0.
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Fig 2. The correction functions C(m) and s(m)/m (see eq. (3.8)). As m → ∞ the multiplicative correction C(m)
approaches one, while the (normalized) threshold s(m)/m (used when m̂′

0 ≤ s(m)) goes to zero, thus m̂0 reduces to the
un-corrected m̂′

0

3.2. The IBHlog estimator. In this section we propose another estimator for m0, based on m̃′
0,

(see eq. (3.3)). Again, since for i = 1, 2...m0 we have ptruei ∼ U [0, 1] ⇒ E[−log(1 − pi)] = 1 and
therefore E[m̃′

0] ≥ m0. Furthermore, if all the alternative p-values pfalsei have a distribution which is

stochastically smaller than the uniform distribution (f false
pi (p) ≤st U [0, 1]), then E[−log(1−pfalsei )] ≤

1, and therefore E[m̃′
0] ≤ m.

The advantage of using the second estimator m̃′
0 over m̂′

0 is that when f false
pi (p) ≤st U [0, 1], the

alternative hypothesis generates p-values skewed to the left. Since − log(1−p) < 2p, ∀p < 1
2 (see eqs.

(3.2) and (3.3)), this typically implies m̃′
0 ≤ m̂′

0 and thus m̃′
0 is typically closer to the true m0. A

possible drawback is that the variance of m̃′
0 is typically larger than that of m̂′

0, which might result
in an instability in the estimation of m0.

Proving control of the FDR for m̂0 is difficult since we need to bound 1/m̂0 which has a complicated
distribution. Here we show that the distribution of m̃′

0 is much simpler, and this enables us to prove
control of the FDR by introducing only a slight additive correction.

Claim 3.2. Define the (corrected) estimator:

m̃0 ≡ 2 + m̃′
0 = 2−

m
∑

i=1

log(1− pi)(3.9)
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Assume that the null p-values are i.i.d U [0, 1]. Then the modified BH procedure with estimator m̃0

and parameter q controls the FDR at level ≤ q.

The proof is achieved by bounding E[1/m̃
(61)
0 ] and then using Thm. 2.3. See Supplement C for full

details

4. Is the FDR monotonic?. In this section we take a slight detour from the study of our
proposed procedures to investigate the following question: is it generally true that by modifying
an FDR procedure to be more stringent, one is guaranteed to obtain a more conservative control
on the FDR? The motivation for dealing with this question in the context of the current paper
(which deals with the control property of a modified BH procedure) comes from the fact that Thm.
2.3 was proved only for step-up procedures, which leads us to ask whether it holds also for the
more conservative step-down case. Monotonicity is a natural property that one might expect when
performing statistical tests, as it allows the researcher to choose a trade-off between maximizing
the statistical power and minimizing the risk of making false discoveries. The analogous question
for a single hypothesis is whether taking a more conservative (lower) p-value cutoff guarantees to
reduce the risk of making a type-I error, and is trivially answered in the affirmative. Our formulation
of the question in the multiple-hypothesis settings using FDR is as follows: Given two procedures,
B(1), B(2) (possibly parameterized by q or other parameters), and assuming that for any realization
of the p-values, B(2) passes more hypotheses than B(1), is it true that FDR(1) ≤ FDR(2)? while
this statement seems a natural and plausible property of FDR procedures, we are not aware of any
previous treatment of it in the literature. Here we show that under certain monotonicity conditions
on the alternative hypothesis p-values distribution, one can prove this monotonicity property of the
FDR.

Theorem 4.1. Let ~p = (p1..m) be a set of independent p-values. Assume that f , the marginal
probability density function of the alternatives, is monotonically non-increasing and differentiable. Let
B(i) be two threshold FDR procedures rejecting R(i)(~p) hypotheses and each having FDR(i), i = 1, 2.
Assume that for any q, R(1)(~p) ≤ R(2)(~p), ∀~p. Then it also holds that FDR(1) ≤ FDR(2).

The proof is given in Supplement D. A particular application of the above theorem is showing
that step-down procedures give better FDR then step-up procedures. Thus, we immediately get:

Corollary 4.2. The statement of Thm. 2.3 holds also for the step-down procedure, provided
that the alternative f is monotonically decreasing.

The above conditions for monotonicity might appear a bit restrictive, and one could hope to
relax them - for example require only f ≤st U [0, 1] instead of monotonicity. We have found that,
perhaps surprisingly, monotonicity of the FDR does not hold under such relaxed conditions, by giving
an example in which FDR monotonicity is violated, even for a simples case of independent test
statistics (both null and non-null), when f ≤st U [0, 1], and when the FDR procedures themselves are
monotonic. It is thus not obvious at all that in practice we will always observe a monotonic behavior
of the FDR, and thus it is possible to get a higher FDR for a more conservative procedure.

Example 4.3. Let m = 3 and m0 = 1. Let the two alternative hypotheses p-values be taken from
a mixture distribution, pi ∼ ǫU [0, ǫ]+ (1− ǫ)δ(pi − ǫ) for some 0 < ǫ < 1. Thus, p2, p3 are ’truncated’
uniform r.v.s., having 1 − ǫ of their mass concentrated at ǫ, and the rest (ǫ) uniformly distributed
on [0, ǫ]; their distributions are stochastically smaller than U [0, 1]. For simplicity of computations
we assume that ǫ << 1 and thus look only at the first order in ǫ, although the example’s conclusion
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holds for any ǫ > 0. Let P (1) be the procedure always rejecting the lowest p-value and P (2) be the
procedure rejecting the two lowest p-values (we assume that ties are handled in the same way by
both procedures, e.g. by taking p-values in lexicographic order - the precise tie-breaking rule does not
change the example’s results). We next compute the FDR for both procedures:

(4.1) FDR(1) = Pr(p1 < p2, p3) = ǫ[(ǫ2/3 + 2ǫ(1− ǫ)/2 + (1− ǫ)2] = ǫ+O(ǫ2)

(4.2) FDR(2) = (1− Pr(p1 > p2, p3))/2 = [1− (1− ǫ)− ǫ3/3]/2 = ǫ/2 +O(ǫ3)

Thus for ǫ small enough FDR(1) > FDR(2) and the more conservative procedure leads, in fact, to a
higher FDR.

5. Synthetic data obtained by simulations. We applied our method, as well as several others
(see below), to synthetic data obtained by simulations performed along the lines of gavrilov:2009,
with full details presented in Supplement E. The advantage of working with synthetic data is that
several parameters of interest are under full control, and one can investigate their effect on the
quality of different procedures and bounds. Furthermore, by performing repeated simulations, one
can determine not only the (expected value) FDR but also the entire distribution of V/R+. One
should bear in mind that results based on specific simulations might have limited applicability and
are hard to generalize, since the simulations use specific configurations (e.g. data distribution, test
to determine p-values, hypothesis dependency structure etc.). A comprehensive simulation capturing
all possible behaviors of the hypothesis is infeasible, but we have tried to explore various different
plausible scenarios which might be encountered in practice, by changing the number of (total and
null) hypothesis and their dependency structure, with both positive and negative correlations. The
simulations produce two kinds of Gaussian random variables: Z1, ...Zm0 , sampled from the standard
normal distribution P0 ≡ N(0, 1), and Zm0+1, ...Zm, sampled from P1 ≡ N(µ1, 1), centered on µ1 > 0.
All variables (both null and non-null) are sampled with covariance ρ, (0 ≤ ρ ≤ 1): at the extreme
cases, setting ρ = 0 corresponds to independent variables whereas ρ = 1 to full (deterministic)
dependency. For each Zi the corresponding two-tailed p-value is obtained, pi = 2Φ(−|Zi|), where Φ
is the standard Gaussian cumulative distribution function. The obtained pi’s have a uniform U [0, 1]
distribution for i = 1, ..,m0 (corresponding to the null hypothesis) and a distribution stochastically
smaller than uniform for i = m0 + 1, ..,m (the alternative hypothesis).

A set of m such variables constitutes a single instance or realization of the data to be analyzed.
To get accurate estimates of the FDR and the V/R+ distribution, we generated for each simulation
50000 such realizations, which generally gave highly accurate and reproducible estimates. Under
the null hypotheses all variables are sampled from the first distribution, m p-values are calculated
accordingly and used as input to one of the procedures with a desired FDR bound q, producing a
list of R rejections. As opposed to real data, here one can go back and identify those V among the
R that were falsely rejected (i.e. were, in fact, selected from P0). This way one can keep track of
the true values of V/R+, their mean (calculated over a large number of instances), variance, etc.
One important goal of the simulation is comparing our procedures to existing ones. Specifically, we
compare our procedure to: (1) the BH95 procedure as described in the introduction, (2) the BKY
procedure which defines a local (i-dependent) estimator form0, given by m̂BKY

0 = m+1−i(1−q), and
uses it in the step down manner of the BH95 procedure with q∗ = qm/m̂BKY

0 , (3) the STS procedure
which introduces m̂STS

0 = (m+ 1 − r(λ))/(1 − λ) as the estimator for m0 where r(λ) = #{pi ≤ λ},
and then uses the step-up BH95 procedure, with q∗ = qm/m̂STS

0 , with the requirement that all the
rejected pi ≤ λ (throughout this paper we used the STS procedure with λ = 0.5). We present here
two kinds of results derived from such simulations. First we compare the values of FDR = E(V/R+)
obtained by the procedures discussed above: BH95, BKY, STS, IBHsum and IBHlog when the
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hypotheses are dependent. In particular, we demonstrate that for positive correlations ρ > 0 our
IBH as well as the BKY procedures yield for a given desired value of q, an FDR that is either less
than q or exceeds it slightly. On the other hand the STS method produce, for ρ > 0, values of FDR
that exceeds q by a large margin. The second aim is to assess the extent to which the value of V/R+,
obtained for a particular realization, will violate the bound, especially for the IBH methods.

As an overview we start by presenting in Fig. 3 the performance of our proposed IBHsum procedure
for fixed m = 500 and q = 0.05, 0.2, and for a wide range of the parameters m0/m (fraction of
alternative hypotheses) and µ1 (signal strength), by estimating the expected value FDR = E(V/R+)
from our simulations. Fig. 3a and c are for the independent case and show both step-down and step-
up results. As we can see, the two become identical when the signal (µ1) is strong or when m0/m is
small. Fig. 3b and d are for the positively dependent case (ρ = 0.8) for which the procedure is not
proved to control the FDR. Indeed we can observe in Fig. 3b violation of the FDR level q for large
signals (µ1); this violation of the bound for the dependent case will be discussed later.
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Fig 3. Isolines of E(V/R+), measured for the IBHsum procedure by simulations, presented in the (µ1,m0/m) plane.
The solid lines in (a) and (c) are for the step-up procedure and the dashed lines for the step-down procedure. (a) and
(c) are for the independent case (ρ = 0). (b) and (d) are for the positive dependency case ρ = 0.8. The FDR levels
are q = 0.05 in (a),(b) and q = 0.2 in (c),(d). In (b) we find E(V/R+) > 0.05 for large µ1, in violation of the bound
q = 0.05. The step-up and step-down procedures tend to coincide for independent p-values and low m0/m; the differences
between them are more significant when the signal is weak (small µ1) and m0/m is high.

5.1. Comparison of several methods under dependency . Here we fixed the signal parameter µ1 =
3.5, and varied m0/m between 0.2 and 1 (for m = 500). We present, in Fig. 4a, c and e results



12 ZEISEL, ZUK, DOMANY

obtained for ρ = 0 (complete independence) and in Fig. 4b, d and f for ρ = 0.8 (strong dependence).
For each instance we applied the five procedures with q = 0.05. For STS we chose λ = 0.5, and our
IBHsum and IBHlog were employed in a step down manner. Fig. 4a and b present for each method the
mean value of V/R+, as a function of m0/m. These means provide excellent estimates of E(V/R+),
and they reveal that as expected, for ρ = 0 all methods satisfy the bound E(V/R+) ≤ q. The STS
and IBH come closest to saturating the bound, with BKY slightly lower and BH95 significantly lower.
The figures show also the result obtained by an ”oracle”, namely the procedure that uses the known
value of m0 in order to determine R′ according to eqs. (1.7) and (1.8).

For ρ > 0 no proved upper bound exists for either of the BKY, STS or IBH procedures. Further-
more, the proof of [6] for the BH95 procedure does not hold for two-tailed tests: indeed, as can be
seen on Fig. 4b, the FDR obtained by the oracle procedure (slightly) violates the bound q = 0.05 for
m0/m ≤ 0.3, in agreement with the violation reported in [21]. Therefore it is important to assess the
extent to which E(V/R+) obtained by each of these methods violates the bound q in the presence
of positive correlations between the hypotheses. As seen in Fig. 4b, for ρ = 0.8 the STS method
produces a measured FDR that overshoots the value q = 0.05 of the bound by more than twice,
for most of the range of m0 values studied. In comparison, the other methods (BH95,BKY,IBHsum)
provide FDR which remains below the bound or exceeds it slightly for a narrow range of m0. The
IBHlog procedure also violates the bound for nearly the entire range of m0/m, but by much less than
STS.

We conclude these comparisons between the different procedures by presenting, in Fig. 4c and d
their power, measured as the fraction of correctly rejected hypotheses, or ’True Discovery Rate’. For
each realization we calculated S = R−V and plotted the ratio S/m1 = (R−V )/(m−m0), averaged
over all instances. This measure of power is one minus the type two error rate, known as the False
Non-Discovery Rate T/m1 ([12]). For the independent case ρ = 0 the power of the ORC, BKY, STS
and both IBH procedures are very close and much better than that of BH95. For ρ = 0.8 STS has the
highest power, followed closely by the oracle, both IBH and BKY, with a large gap to BH95. Again,
one should bear in mind that STS has the largest number of discoveries R, at the cost of violating
strongly the bound of 0.05 on the FDR. Interestingly, there is no simple monotonicity relationship
between the values of the FDR, E(V/R+), and the True Discovery Rate E(S/m1).

Fig. 4e shows the standard deviation (st.d.) of V/R+ for the independent case, and Fig. 4f for
the positively dependent case. As can be seen when the p-values are independent the st.d. is very
similar for all the procedures, but increases steeply as m0/m → 1. In the case of dependent p-
values the situation becomes worse; for nearly the entire range of m0/m the coefficient of variance
cv = st.d.(V/R+)/E(V/R+) is greater than 1. Also, as will be mentioned below, for real data the st.d.
of the STS procedure is significantly higher than that of the IBH. These high values of st.d. result
from the FDR definition, since the expectation of V/R+ takes into account many realizations with
R = 0 that give, by definition, V/R+ = 0, making the distribution of V/R+ very non-symmetric. A
comparison similar to the one presented in Fig. 4 for q = 0.05 is presented in Supplement E Fig. 4
for q = 0.2, and provides similar observations. We thus conclude that for ρ = 0 our IBH procedures
provide, an expected improvement over the BH95 in therm of power and saturation of the bound
and their performance is comparable to that of the other adaptive methods tested. For dependent
variables STS violate the bound on E(V/R+) much more than the IBHlog and the IBHsum which
violate it only slightly.

5.2. Applicability for a particular realization. Controlling the FDR at a level q means that the
average fraction of false rejections is no larger than q. It could still be the case that on average
the fraction of false rejections is controlled, yet for a large percentage of the realizations one gets
many false rejections and a high proportion of false discoveries. In contrast to the average behavior,
captured by the FDR definition, questions involving the distribution of false rejections, affecting the
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Fig 4. Results obtained for synthetic data with m = 500 hypotheses; m0 was varied, the FDR was set at q = 0.05, the
mean of the distributions P1 was µ1 = 3.5 and the data were drawn either with covariance ρ = 0 [(a), (c) and (e)] or
ρ = 0.8 [(b), (d) and (f)]. Six methods were compared: oracle (ORC), BH95, BKY, STS and our two IBH procedures
(in a step down manner), showing E(V/R+) in (a) and (b), the power E(S)/m1 in (c) and (d), and the standard
deviation (st.d.) of V/R+ in (e) and (f), for the independent case and positively dependent cases, respectively.

behavior of a particular realization, were not studied much in the literature (a notable exception
is [17] who studied the variance of R). We therefore set out to address the issue of validity of the
bound for a particular realization, by calculating for the synthetic data the probability Pr( V

R+ ≤ q).
This was done for q = 0.05 for the six procedures (ORC, BH95, BKY, STS, IBHsum and IBHlog,
the latter two in step-down mode). The probability Pr( V

R+ ≤ q) was estimated by computing, for

each procedure, the fraction of realizations in which we indeed got V
R+ ≤ q. In such a comparison

one should bear in mind that a conservative procedure, such as BH95, restricts the discoveries much
more than a procedure that produces tight bounds (such as the oracle). For example, looking at Fig.
4a we see that the mean value E(V/R+) of BH95 is much lower than q = 0.05, and hence the weight
of the tail of the distribution of V/R+ values that ”leaks” to V/R+ > 0.05 is very small, whereas for
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the oracle, which has E(V/R+) ≈ 0.05, the probability of exceeding 0.05 is close to 0.5, and if we
want to guarantee that Pr(V/R+ < B) ≈ 1, we must set B at a value which is significantly larger
than the FDR bound q. As seen in Fig. 5a, the results of IBH are slightly more conservative than
the oracle in the case of independence, while all improved procedures have fairly similar results. In
the case of strong dependency, Fig. 5b, the differences between the procedures are more pronounced;
the STS is the most permissive procedure.

It is very interesting to see that in the case of positive dependent statistics the probability to
violate the bound is smaller, although E[V/R+] is larger. This is again due to the fact that in these
cases we get R = 0 for many realizations, which means that V/R+ = 0, i.e. the variance of V/R+ is
increased for positive correlations, whereas for the independent case V/R+ is very likely to be close
to its expectation. Further study on the distribution of V/R+ is required in order to shed light on
the behavior of different procedures for particular realizations. Fig. 5c and d present the cumulative
distribution function (CDF) of V/R+ for specific set of parameters, m = 1000,m0/m = 0.7, µ1 =
3.5, q = 0.05, and the different procedures to be compared, for the independent case (Fig. 5c) and for
the positive dependence case (Fig. 5d). We would like to emphasize two points: 1. the CDF of our
improved procedures have very similar behavior to the other improved procedures. 2. while in the
independent case the distribution is close to symmetric, under dependency the distribution is very
non-symmetric, and hence controling the mean (of V/R+) is almost irrelevant.

6. Application to gene expression data . As an ultimate tests for their utility, we wanted to
asses the performance of our new procedures on real life data, which typically provide complex and
unexpected dependency structures which are hard to capture in simulations. We therefore applied
our procedures that were described in Sec. 3 to publicly available expression data. First we present
in full detail how our procedures were applied to two datasets. Next, our procedures were applied to
33 datasets and results were compared with those obtained by several other procedures: the original
BH95 and the improved bounds of BKY [5] and STS [25] with λ = 0.5.

6.1. Detailed application of our procedures. The first dataset used is that of [1] who studied several
types of childhood leukemia. We focus here on search for genes whose expression separated 6 patients
with normal bone marrow from 11 T-Cell Acute Lymphoblastic Leukemia patients, which yielded
a large number of discoveries (differentiating genes). The number of hypotheses (e.g. potentially
differentiating probesets) was m = 21288; the corresponding reported p-values were ordered and
plotted on Fig. 1a. Our estimators for m0, obtained using eq. (3.8) and (3.9) for this data, were
m̂0 = 7093, m̃0 = 6380, and the estimated numbers of discoveries were m− m̂0 ≈ 14000,m − m̃0 ≈
15000.

The second study, of [18] on breast cancer, had a relatively small number of discoveries. The aim
was to find genes that differentiated early discovery breast cancer cases of poor and good outcomes,
i.e. were differentially expressed between tumors obtained from 38 subjects that died of the disease
and from 121 patients who were alive. The number of hypotheses was m = 44611, and our p-values
based estimators for m0 (plotted in Fig. 1b) were m̂0 = 38587, m̃0 = 37580.

For both studies we have set the desired FDR value at q = 0.1. We plot in Fig. 1 the sorted
p-values p(i) versus i/m for these two datasets. In each of the two figures we show three FDR lines;
the αi of BH95 (see eq. (1.3)) and the values of γi corresponding to our two procedures, (see eq.
(2.1)).

For the first dataset the BH95 procedure yields at q = 0.1 a large number of R = 0.6065 ·
21288 = 12912 discoveries (see Fig. 1a). When we apply our procedure we get, at the same FDR,
R′ = 0.746 · 21288 = 15884 (for the IBHsum) discoveries, i.e. 23% more.

The BH95 procedure yields for the second dataset (at q = 0.1) R = 499 discoveries. When we
apply our procedure we get, at the same FDR, R′ = 621 (for the IBHsum) discoveries, i.e. 24% more.
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Fig 5. (a) and (b) shows the probability that a single instance satisfies the desired FDR level q as a function of m0/m.
Results are shown for simulated data with m = 1000 hypotheses, the mean of the distribution P1 was µ1 = 3.5, the
FDR bound was set to q = 0.05. Five methods are compared: ORC, BKY, STS, and our two IBH procedures (in the
step-down manner). (a) ρ = 0 and (b) ρ = 0.8. The oscillatory behavior of some bounds is caused by finite size effects.
(c) and (d) shows the cumulative distribution function of V/R+ for m0/m = 0.7, (c) ρ = 0 and (d) ρ = 0.8 (obtained
from 106 realizations).

6.2. Applying our procedures to many datasets. We downloaded from the ONCOMINE website
[22] p-value vectors that were obtained from 33 comparisons, performed on expression data from
19 studies of various types of cancer: [1, 3, 7–10, 13–16, 18, 23, 26–29, 31–33]. Depending on the
biological question at hand, either one or two-tailed tests are appropriate. Therefore we applied our
procedures to both test types. We focused on two opposing scenarios: those with a small number
(less than 2% of m, for the BH95 procedure with q = 0.05) of discoveries, and those with a large
number (more than 10% of m). The 33 sorted sets of pi values are plotted, versus i/m, in Fig. 6,
separately for the four types of comparisons that were made (one/two-tailed test, low/high number
of discoveries).

As can be seen in Fig. 6, for each type of comparison the sorted p-value curve has a typical shape.
In the case of a large number of discoveries, Fig. 6a and c, the curve is more convex (and flatter near
zero) than in the case of a small number of discoveries, Fig. 6b and d. Another clear difference is
between the two-tailed (Fig. 6a and b) and the one-tailed (Fig. 6c and d) sorted p-value curves. In
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Fig 6. Sorted p-value vectors from 33 expression datasets of various cancer-related comparisons: (a) - two tailed tests
with large numbers of discoveries, (b) - two tailed tests with small numbers of discoveries, (c) - one tailed tests with
large numbers of discoveries, (d) - one tailed tests with small numbers of discoveries.

the case of two-tailed tests, the entire curve is convex, while for one-tailed tests the right side of the
curve is concave; the reason is that in the latter case there are very often some hypotheses that are
shifted, with respect to the null hypothesis, in the direction opposite to the one tested for by the
one-sided test (for example, if one looks for up-regulated genes, there are typically also many down
regulated genes, which produce very high p-values). For detailed treatment of FDR estimation in the
case of one tailed tests see [19].

We compare here the performance of five procedures: the BH95,BKY,STS, IBHsum and IBHlog
(both IBH in the step-down mode). For each of the improved procedures we determined the ratio
between the number of rejected hypotheses it yielded and the number of hypotheses rejected by
BH95. We present in Table 2 the mean value of this figure of merit and its standard deviation,
calculated for the datasets of each of the types of comparisons mentioned above, at q = 0.05 and
q = 0.1.

Inspection of Table 2 reveals that for types (a),(b) - of two tailed tests, irrespective of the number
of discoveries and FDR level, STS and both IBH procedures give significantly higher improvement
over BH95 than the BKY procedure, with STS performing slightly better than IBHlog, followed by
IBHsum. For the one-tailed test with large numbers of discoveries (type (c)) the mean improvement
of BKY is the highest while STS and IBHsum are quite similar. IBHlog fails dramatically in this case
due to the abundance of p-values close to one, giving an over-estimation of m0. For type (d), one
tailed tests with a small number of discoveries, IBHsum is slightly better than STS and both yield a
significantly higher improvement than BKY. In all four types and for all values of FDR, the standard
deviations of V/R+ of the STS method are significantly higher than those of BKY and the IBHsum
procedures. Furthermore, as shown in Sec. 5.1 (see Fig. 4b), in the case of positively dependent test
statistics the STS procedure loses control of the FDR in a much more drastic manner than our IBH
procedures. Since we expect that correlations between the expression profiles of different genes will be
present in most data, the STS method may produce unreliable values of the figure of merit presented
here.

In summary, our IBH procedures constitute in all cases a significant improvement over the original
BH95; in all but one of the comparison types the improvement is significantly better than that of the
BKY method. Comparison with STS yields mixed results, but the edge of STS over IBH in two of
the four comparison types is overshadowed by the fact that STS does not provide a reliable bound
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q BKY STS IBHsum IBHlog

a. Two tailed, large number of discoveries (10 studies)

0.05
1.110 1.239 1.200 1.222
(0.043) (0.138) (0.110) (0.130)

0.1
1.155 1.258 1.213 1.237
(0.057) (0.117) (0.087) (0.102)

b. Two tailed, small number of discoveries (10 studies)

0.05
1.003 1.316 1.231 1.291
(0.003) (0.197) (0.140) (0.179)

0.1
1.017 1.308 1.230 1.275
(0.027) (0.161) (0.117) (0.137)

c. One tailed, large number of discoveries (8 studies)

0.05
1.049 1.011 1.014 0.108
(0.019) (0.033) (0.026) (0.306)

0.1
1.062 1.012 1.014 0.108
(0.026) (0.0340 (0.024) (0.305)

d. One tailed, small number of discoveries (5 studies)

0.05
0.998 1.027 1.025 0.882
(0.020) (0.052) (0.017) (0.123)

0.1
1.004 1.028 1.031 0.888
(0.031) (0.079) (0.022) (0.120)

Table 2

Comparison of the improvement in power (ratio between numbers of rejected hypotheses with respect to the BH95
procedure: R/RBH95) of several methods: BKY [5], STS [25] IBHsum and IBHlog in the step-down version. Mean

values and standard deviations (in parentheses) are given for each of the four types of comparisons.

for datasets with positive correlations between probe sets, while IBH remains reliable.

7. Discussion. We addressed the problem of controlling the False Discovery Rate in the case of
a large number of comparisons, or hypotheses to be tested simultaneously. Providing a reliable and
possibly tight bound on the FDR is an issue of major importance for analysis of high-throughput
biological data, such as obtained using gene expression microarrays. We presented here two estimators
of m0, the number of true null hypotheses. We proved that both estimators can be used for FDR
estimation and, more importantly, for FDR control. Thus, we added two procedures to the rather
limited repertoire of improved FDR procedures for which control of the FDR is known to hold.
Our proof of control relies on a general theorem, which provides a bound on the FDR for improved
procedure using any estimator m̂0(p1, ...pm) provided a condition of monotonicity is satisfied, and one
is able to bound the reciprocal mean of the estimator. In addition, we proved a novel result, that FDR
procedures satisfy a monotonicity property under some very plausible assumptions. As a corollary of
this theorem, we show that any bound on the FDR that was proved for the step up procedure, holds
also for the more conservative step down procedure as well. Our proofs of control hold only for the
independent case. For the dependent case, results for control are even more scarce, and limited to
certain specific types of dependency. We therefore studied the behavior of our procedures, compared
to others known from the literature, under dependency, using simulations. In addition to studying
behavior under dependency, our simulations also enabled us to understand the distribution of the
fraction of false hypothesis, and in particular the probability of violating the bound for a particular
given realization. Further research on this aspect of comparing procedures is needed and we expect it
to provide interesting new insights and measures for comparisons of different procedures. We finally
applied our procedures, as well as several others, to a large number of cancer-related expression
datasets. For both real and simulated data, our new procedures provided more rejections (separating
genes) than the similar list of Benjamini and Hochberg and the very recently introduced improved
bound of BKY [5], for a fixed desired value of the FDR. In some cases the improved bound of STS [25]
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gives more rejection than our method, but as we have shown on synthetic data, when there are positive
correlations, STS loses control of the FDR in a much more pronounced way than our procedure. To
summarize: a researcher may either obtain a desired number of differentially expressed genes at a
lower FDR, or get a longer list of such genes at the desired FDR level, at no added computational
cost. We recommend using our IBHlog procedure for two-tailed tests, and IBHsum procedure for
one-tailed test, to increase discovery power while controlling FDR levels.
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