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7. Appendix
7.1. Noiseless GRC
Proof of lemma 3

Proof. For any two matrices A € R,,, xp,, and B € R, x.m, we define the Kronecker product as a matrix in Ry, xngms:

allB a12B . aanB
A® B = . . ) . (19)
an 1B an 2B . anlngB

The form of the transformation V7" A(©) in vectors is (I,, ® VT )vec(A(©)) where the distribution of (1, ® VT )vec(A©))
is also Gaussian with covariance matrix

(I, @ VT cov(vec( AN (I, @ V)T =
(L, oV (I, o VT = 6%, 0 I, (20)

7.2. Gradient Descent

The gradient descent stage is performed directly in the space of rank r matrices, using the decomposition X=WS where
W e Ry, «xr and S € R, «,,, and computing the gradient of the loss as a function of W, S (see Appendix in (21,22).

LW, S) =[|APWS — BB 4+ |[WSA) — B3 1)

We want to find the minimum of (21) using gradient descent our problem is that the loss L isn’t convex and therefore we
can’t promise the gradient descent will converge to a global optimum. but if we got X (the output of SVLS) as starting
point we might get that the gradient descent converges to the global minimum since we start close to it.

The derivative of L is (using chain rule)

% = AR (APBWS — BI)ST 4 (WSAC) — BO)A@)" gT
% = WTAR (ABWS — BB L WT(WSA — BO)AO" (22)

7.3. Proof of RCMC

We give here some useful lemmas to prove lemma 4 we start with lemma from (Candés & Romberg, 2007).

Lemma 5. Ify; is a family of vectors in R* and r; is a 0/1 Bernoulli sequence or random variables with P(r; = 1) = p,
then

_ log(d
B[S — p)ys 0 mll) < %mamnym 23)

for some numerical C provided that the right hand side is less than 1.

For lemma 4 we uses a result from large deviations theory that proved by Talagrand (Talagrand, 1996).

Theorem 4. Let Y;...Y,, be a sequence of independent random variables taking values in a Banach space and define

7 = supser S f(Y3) 4

i=1
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where F'is a real countable set of functions such that if f € F than —f € F.

Assume that |f| < B and E(f(Y;)) = 0 for every f € F and i € [n]. Then there exists a constant C such that for every
t>0

P(|1Z - E(Z)| > t) < 3exp (_tlog(l +

= ) @5

o+ Br
where & = supger S0y E(F(Y:)).

Theorem (4) helps us in the next lemma which taken from Theorem 4.2 in (Candes & Recht, 2009). We bring here the
proof in our notations for convenience.

Lemma 6. LetY; = p~'(r; — p)Pu(e;) ® Pu(e;), Y = > 1 Yiand Z = ||Y||. Suppose E(Z) < 1. Then for every

A > 0 we have
p(1Z ~ B(Z)| > A\/W) < Beap(—ymin(X*log(n) AW) 6)

for some positive constant - .

Proof. Weknow that Z = ||Y'||2 = supy, ¢, < f1,Y fo >= supy, 1, >, < f1,Yif2 >, where the supremum is taken over
a countable set of unit vectors f1, fo € Fy. Let F be the set of all functions f such that f(Y) =< f1,Y fo > for some
unit vectors f1, fo € Fy. Forevery f € Fand ¢ € [n] we have E(f(Y;)) = 0. From the incoherence of U we conclude
that
_ _ T
[fY)l=p~ s = pll < fr, Puled) > || < Pules), fo > [ < pH|IPuel” <p~' —p. 27

In addition
Ef2(Y;) =p (1 —p) < f1, Pule;) >2< Py(ei), f» >2<

_ 1T
PP )Pl < Puen), fo > [ < p™'—ul < Puled), f2 > . (28)
Since Y-, | < Pu(ei), f2 > |7 = 22| < e, Pu(fa) > [ = [|[Pu(fo)l|* < 1. weget ), Ef*(Yi) <p~'Ip.

We can take B = 2p~ ! spandt = \y/ % and from Theorem (4)

p(1Z — E(Z)| = t) < 3exp(

—t t —tlog(2) . t
ﬁlog(l + 5)) < 3exp (KO_QB()mm(L 2)) (29)

where the last inequality is due to the fact that for every u > 0 we have log(1 + u) > log(2)min(1,u). Taking v =
—log(2)/K finish our proof. O

We now prove lemma 4

Proof. 4 Decompose any vector w € R asw = >, < w,e; > e;. Therefore Py(w) = >, < Py(w),e; > €; =
> <w,Py(e;) > e;. Hence

P, ryr Py(w) = Zri <w, Py(e;) > e; = PyP,mr Py(w) = Zri < w, Py(e;) > Py(e;) (30)

3

In other words the matrix Py P, ryr Py is
PyPyr Py =Y riPu(e;) @ Py(e;) 31
U is p—incoherent, thus max;cp||Pu(e)|| < /", hence from 5 we have E(p~!||PyP nr Py — pPyll2) <

Cy/ h’g;}% < 1 for p large enough.

Take A\ = \/g where 7 as in Theorem 4 and get that if p > W then from lemma 6 with probability of at least

1 —3n"" we have Z < C’\/logé% + %\/log(g#. Taking Cr = C + % finishes our proof. O
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7.4. Proof for Noisy GRC

The proof of Theorem 3 is using strong concentration results on the largest and smallest singular values of n x k matrix
with i.i.d Gaussian entries

Theorem 5. (Szarek, 1991)Let A € R,,«i. be a random matrix A i N(0, %) Then, its largest and smallest singular
values obey:

k 2
P(o1(A) > 1+ \\/fﬁ +1)<e /2,
P(op(A) <1 - :/fg —t)<e /2 (32)

Corrolary 2. Let A € R,,«j, where n > 4k be random matrices with i.i.d N (0, 1) entries, and let At be the pseudoinverse
of A. Then

p (IAWQ < fﬁ) >1—e /18 (33)

Proof. Since AT is the pseudoinverse of A, ||AT| ‘2=ﬁ, from Theorem (5) 1, (A) > v/n — vk — ty/n with probability

1—emt?/2, Therefore, if we take n > 4k and t = % we get

P (||AT||2 < jﬁ) _p (akm) > ”) Ppp—Ty G4)

We also use the following lemma from (Shalev-Shwartz & Ben-David, 2014):
Lemma 7. Let Q) to be a finite set of vectors in R", let § € (0,1) and k be an integer such that

o= [T 55

Let A € Ry, be a random matrix with A i N(0, %) Then,

A 2
P (mame ‘ ||||;||2 - 1‘ < e) >1-46 (36)

Lemma 7 is a direct result of Johnson-Lindenstrauss lemma (Dasgupta & Gupta, 2003) applied to each vector in ) and
using the union bound . Representing the vectors in @ as a matrix, the lemma shows that A9 A(©) preserve matrix
Frobenius norm in high probability, which is a weaker property than the RIP which holds for any low-rank matrix.

To prove Theorem 3, we first represent || X — X || as a sum three parts (lemma 8), and then give probabilistic upper
bounds to each of the parts. We define Ag{) = AB®[ and AE/CT) = V7T A©) From lemma 3

AEA]R), Ag/CT) S N(0,1), hence rank(AéR)) = mnk:(AE,CT)) = r. We assume w.l.o.g that X = X (see Algorithm 2).
Therefore, from eq.(8) we have X = U(AER)TAER))”A%R)TB(R).

T T
We denote by AgR) = (A(ﬁR)TAéR))*lAéR)Tand AE,CT) = Ag/CT)T (AE/CT) AE/CT)T)*1 the Moore-Penrose pseudo-inverse of
Ag}R) and Ag/CT), respectively. We next prove the following lemma

Lemma 8. Ler A and A©) be as in the GRC model and Z") | Z(©) be some noise. Let X be the output of SVLS. Then:

|X — X||p <T+1I+III
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where:
I=||(B“Y §Q>WHF

A T
1L =||0AYY A (BE0) - B(C))A(C |

TI1 z||UAgR)TZ(R>||F

Proof. We represent || X — X||p as follows
1X - X||r =
1X — (AP A AP (AR X 4 20| =
(R)T 4(R)y—1 4(R)T 4(R)
HX—U(AU AT A, Al

A BT 4 (R)y -1 4 (R

U(Aé) A;])) 1A§7)Z(R)||F <
A~ T T

1X = O(ASY AU =1 AUD AR X + T

where we have used the triangle inequality. We next use the following equality
T
to obtain:
R (R (BT
T A
2 i
(1o — TAS AR X || =
[(Ln — UA(UR)TA(R)) A(C)A VT||
2 T
HUﬁ—(Lﬁf)AUﬂﬂyamAgi|b

where the last equality is true because V' is orthogonal.

Since U is a basis for spcm(B( ))) there exist a matrix L such that UL = B((TC)) and we get:

(I, — UAY? A(R>)B((C;) =

BT gL, =

B(( UA

B\ —UL=0

Therefore
(I — UA;]R)TA(R))B(C,O)A(C)TH
I~ DAL 4®) (5D _ 5O 4G <
18~ B AR 1+
[T ADPT A (B0 _ BONAQ ||y = 1411

Combining eq. (44) and eq. (40) gives the required result.

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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We want to bound each of the three parts in the formula of lemma 8. We use the following claim:

Claim 1. [|B( — B{{][|; < 2|7V

Proof. We know that || B(¢) — B(C |2 < [|B) — B©0)||y since rank(B C)) = rank(B(©9), and B((g) is the closest

rank 7 matrix to B(®) by deﬁnmon. Therefore from the triangle inequality

(B9 — BT[> <
1B =B ll2 + (1B — BEV||; <
2||B@0 — B@)||y = 2||2(D]], (45)

O

Now we are ready to prove Theorem 3. The proof uses the following inequalities for matrix norms: for any two matrices
A,B ) [|ABl2 < || Alla| Bll2. i) || ABll < [|All||Bll2 and (iii) if rank(A) < r then || Al[7 < /7| Allo.

Proof. We prove (probabilistic) upper bounds on the three terms appearing in lemma 8.

1. We have
T
rank (( B(©:0) _ B((g))A( ) ) < rank (Ag,CT) ) <r (46)
Therefore ; i
1=(|(BC0 — B AL || < vrl|(BEO — B[] AL |15 @7)
Since Aﬁ/CT) s N(0,1), from Corollary 2 ||A(C) [l2 < \/E for k > 47 with probability 1 — e~*/1® hence
1< 4/21BOO - B @9)

From Claim 1 we have bound on (37)
1< clﬂ|z<0>||2 (49)
with probability 1 — e~* for absolute constants C1, 1.

2. Uis orthogonal and can be omitted from IT without changing the norm. Applying inequality (ii) above twice, we get
the inequality:

T T T T T
I = HUA (R) A(R)(B(C ,0) _ B(C))A(C) lF < ||A§3R) ||2HA§A]R) A(R)(B(C,O) B(C))H ||A(C) Il (50)

From Corollary 2 we know that for & > 4r we have ||A( ! |2 % and ||AVT ||2 < f’ each with probability
> 1 — e */18_ Therefore, with probability > 1 — 2¢~*/ s
1
I < AP BCO — B D

AW and B(C:0) B((TC)) are independent and rank(B(¢0) — B((TC))) < 2r. Therefore we can apply lemma 7 with k

such that £ > log(2k) + £ (this holds for k > 40) to get with probability > 1 — 2e~*/18:

16 16\/
IT < (| A(B — BED)||p < === |(BY) ~ <“|u<:mvf|3”° Bl (52

From eq. (51) and (52) together with Claim 1 we have constants Cs and ¢, such that with probability 1 — 3e=¢*

IT < Cof| 2L, (53)
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3. rank(A%R)T) < r and HA%R)THQ < % for k > 4r from corollary (2) with probability > 1 — e~*/!: Hence with
probability> 1 — e~ */18:

~ ot t t t avr
111 =|TAY 20| p = || A 20| p < V)| ALY 2|y < | AU o] 2P < \/\gnzwng (54)

hence we have constants C3 and c3 such that with probability > 1 — e =%,

III < G| 2B |, (55)

Combining equations (55,53,49) with lemma 8 and taking O =1+ Oy, B = C3 with ¢ = min(cy, ca, ¢3) concludes
our proof. O
7.5. Simulations for Large values of n

We varied n between 10 and 1000, with results averaged over 20 different matrices of rank 3 at each point, and try to

reconstruct them from & = 20. We see that preference is insensitive to n. if we take A A(C) RN (0, 1) instead of
N(0, 1) we will get results as in (3)
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Figure 5. Reconstruction error for n X n matrix where n is varied between 10 and 1000, £ = 20 and » = 3 and two different noise
levels: 7 = 0.1 (blue) and 7 = 0.01 (red). Each point is an average over 20 matrices.

Now we take n, k,r — oo while the ratios % = 5and % = 4 are constant, and look at the relative error for different noise
level. Again, the relative error converges rapidly to constant, independent of n, k, r .
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Figure 6. We reconstruct matrix X for ¢ between 1 and 50 and n = 20¢, kK = 47 and r = 4. and for different noise level 7 = 0.1 (blue)
and 7 = 0.01 (red).



