7. Appendix

7.1. Noiseless GRC

Proof of lemma 3

Proof. For any two matrices $A \in \mathbb{R}_{n_1 \times n_2}$ and $B \in \mathbb{R}_{m_1 \times m_2}$ we define the Kronecker product as a matrix in $\mathbb{R}_{n_1 m_1 \times n_2 m_2}$:

The form of the transformation $V^TA^{(C)}$ in vectors is $(I_n \otimes V^T)vec(A^{(C)})$ where the distribution of $(I_n \otimes V^T)vec(A^{(C)})$ is also Gaussian with covariance matrix

$$(I_n \otimes V^T)cov(vec(A^{(C)}))(I_n \otimes V^T)^T =$$

$$\sigma^2(I_n \otimes V^T)(I_n \otimes V^T)^T = \sigma^2I_r \otimes I_n$$
(20)

7.2. Gradient Descent

The gradient descent stage is performed directly in the space of rank r matrices, using the decomposition $\hat{X}=WS$ where $W \in \mathbb{R}_{n_1 \times r}$ and $S \in \mathbb{R}_{r \times n_2}$ and computing the gradient of the loss as a function of W, S (see Appendix in (21,22).

$$L(W,S) = ||A^{(R)}WS - B^{(R)}||_F^2 + ||WSA^{(C)} - B^{(C)}||_F^2$$
(21)

We want to find the minimum of (21) using gradient descent our problem is that the loss L isn't convex and therefore we can't promise the gradient descent will converge to a global optimum. but if we got \hat{X} (the output of SVLS) as starting point we might get that the gradient descent converges to the global minimum since we start close to it.

The derivative of L is (using chain rule)

$$\frac{\partial L}{\partial W} = A^{(R)^T} (A^{(R)}WS - B^{(R)})S^T + (WSA^{(C)} - B^{(C)})A^{(C)^T}S^T
\frac{\partial L}{\partial S} = W^T A^{(R)^T} (A^{(R)}WS - B^{(R)}) + W^T (WSA^{(C)} - B^{(C)})A^{(C)^T}$$
(22)

7.3. Proof of RCMC

We give here some useful lemmas to prove lemma 4 we start with lemma from (Candès & Romberg, 2007).

Lemma 5. If y_i is a family of vectors in \mathbb{R}^d and r_i is a 0/1 Bernoulli sequence or random variables with $P(r_i = 1) = p$, then

$$E(p^{-1}||\Sigma_i(r_i - p)y_i \otimes y_i||) < C\sqrt{\frac{\log(d)}{p}} \max_i ||y_i||$$
(23)

for some numerical C provided that the right hand side is less than 1.

For lemma 4 we uses a result from large deviations theory that proved by Talagrand (Talagrand, 1996).

Theorem 4. Let $Y_1...Y_n$ be a sequence of independent random variables taking values in a Banach space and define

$$Z = \sup_{f \in F} \sum_{i=1}^{n} f(Y_i) \tag{24}$$

where F is a real countable set of functions such that if $f \in F$ than $-f \in F$.

Assume that $|f| \leq B$ and $E(f(Y_i)) = 0$ for every $f \in F$ and $i \in [n]$. Then there exists a constant C such that for every $t \geq 0$

$$P(|Z - E(Z)| \ge t) \le 3exp\left(\frac{-t}{CB}log(1 + \frac{t}{\sigma + Br})\right)$$
 (25)

where $\sigma = \sup_{f \in F} \sum_{i=1}^{n} E(f^{2}(Y_{i})).$

Theorem (4) helps us in the next lemma which taken from Theorem 4.2 in (Candès & Recht, 2009). We bring here the proof in our notations for convenience.

Lemma 6. Let $Y_i = p^{-1}(r_i - p)P_U(e_i) \otimes P_u(e_i)$, $Y = \sum_{i=1}^n Y_i$ and $Z = ||Y||_2$. Suppose $E(Z) \le 1$. Then for every $\lambda > 0$ we have

$$p(|Z - E(Z)| \ge \lambda \sqrt{\frac{\mu r log(n)}{pn}}) \le 3exp(-\gamma min(\lambda^2 log(n), \lambda \sqrt{\frac{p n log(n)}{\mu r}})$$
 (26)

for some positive constant γ .

Proof. We know that $Z = ||Y||_2 = \sup_{f_1, f_2} < f_1, Yf_2 > = \sup_{f_1, f_2} \sum_i < f_1, Y_i f_2 >$, where the supremum is taken over a countable set of unit vectors $f_1, f_2 \in F_V$. Let F be the set of all functions f such that $f(Y) = < f_1, Yf_2 >$ for some unit vectors $f_1, f_2 \in F_V$. For every $f \in F$ and $i \in [n]$ we have $E(f(Y_i)) = 0$. From the incoherence of U we conclude that

$$|f(Y_i)| = p^{-1}|r_i - p|| < f_1, P_U(e_i) > || < P_U(e_i), f_2 > | \le p^{-1}||P_U(e_i)||^2 \le p^{-1} \frac{r}{n} \mu.$$
(27)

In addition

$$Ef^{2}(Y_{i}) = p^{-1}(1-p) < f_{1}, P_{U}(e_{i}) >^{2} < P_{U}(e_{i}), f_{2} >^{2} \le$$

$$p^{-1}||P_{U}(e_{i})||^{2}| < P_{U}(e_{i}), f_{2} > | \le p^{-1} \frac{r}{n} \mu| < P_{U}(e_{i}), f_{2} > |^{2}.$$
(28)

Since $\sum_i |< P_U(e_i), f_2>|^2 = \sum_i |< e_i, P_U(f_2)>|^2 = ||P_U(f_2)||^2 \leq 1$. we get $\sum_i Ef^2(Y_i) \leq p^{-1} \frac{r}{n} \mu$.

We can take $B=2p^{-1}\frac{r}{n}\mu$ and $t=\lambda\sqrt{\frac{\mu rlog(n)}{pn}}$ and from Theorem (4)

$$p(|Z - E(Z)| \ge t) \le 3exp(\frac{-t}{KB}log(1 + \frac{t}{2})) \le 3exp\left(\frac{-tlog(2)}{KB}min(1, \frac{t}{2})\right) \tag{29}$$

where the last inequality is due to the fact that for every u>0 we have $log(1+u)\geq log(2)min(1,u)$. Taking $\gamma=-log(2)/K$ finish our proof.

We now prove lemma 4

1138 Proof. 4 Decompose any vector $w \in \mathbb{R}^n$ as $w = \sum_{i=1}^n \langle w, e_i \rangle e_i$. Therefore $P_U(w) = \sum_i \langle P_U(w), e_i \rangle e_i = \sum_i \langle w, P_U(e_i) \rangle e_i$. Hence

$$P_{A^{(R)^T}}P_U(w) = \sum_{i} r_i < w, P_U(e_i) > e_i \Longrightarrow P_U P_{A^{(R)^T}}P_U(w) = \sum_{i} r_i < w, P_U(e_i) > P_U(e_i)$$
(30)

In other words the matrix $P_U P_{A(R)^T} P_U$ is

$$P_U P_{A(R)^T} P_U = \sum_i r_i P_U(e_i) \otimes P_U(e_i)$$
(31)

U is μ -incoherent, thus $\max_{i \in [n]} ||P_U(e_i)|| \leq \sqrt{\frac{\tau \mu}{n}}$, hence from 5 we have $E(p^{-1}||P_U P_{A^{(R)^T}} P_U - p P_U||_2) < C\sqrt{\frac{\log(n)r\mu}{pn}} \leq 1$ for p large enough.

Take $\lambda = \sqrt{\frac{\beta}{\gamma}}$ where γ as in Theorem 4 and get that if $p > \frac{\mu log(n)r\beta}{n\gamma}$ then from lemma 6 with probability of at least

1152
$$1-3n^{-\beta}$$
 we have $Z \leq C\sqrt{\frac{\log(n)r\mu}{pn}} + \frac{1}{\sqrt{\gamma}}\sqrt{\frac{\log(n)r\mu\beta}{pn}}$. Taking $C_R = C + \frac{1}{\sqrt{\gamma}}$ finishes our proof.

7.4. Proof for Noisy GRC

The proof of Theorem 3 is using strong concentration results on the largest and smallest singular values of $n \times k$ matrix with i.i.d Gaussian entries

Theorem 5. (Szarek, 1991)Let $A \in \mathbb{R}_{n \times k}$ be a random matrix $A \stackrel{i.i.d.}{\sim} N(0, \frac{1}{n})$. Then, its largest and smallest singular values obey:

$$P(\sigma_1(A) > 1 + \frac{\sqrt{k}}{\sqrt{n}} + t) \le e^{-nt^2/2},$$

$$P(\sigma_k(A) \le 1 - \frac{\sqrt{k}}{\sqrt{n}} - t) \le e^{-nt^2/2}$$
 (32)

Corrolary 2. Let $A \in \mathbb{R}_{n \times k}$ where $n \geq 4k$ be random matrices with i.i.d N(0,1) entries, and let A^{\dagger} be the pseudoinverse of A. Then

$$P\left(||A^{\dagger}||_{2} \le \frac{6}{\sqrt{n}}\right) > 1 - e^{-n/18}$$
 (33)

Proof. Since A^{\dagger} is the pseudoinverse of A, $||A^{\dagger}||_2 = \frac{1}{\sigma_k(A)}$, from Theorem (5) $\sigma_k(A) \ge \sqrt{n} - \sqrt{k} - t\sqrt{n}$ with probability $1 - e^{nt^2/2}$. Therefore, if we take $n \ge 4k$ and $t = \frac{1}{3}$ we get

$$P\left(||A^{\dagger}||_{2} \le \frac{6}{\sqrt{n}}\right) = P\left(\sigma_{k}(A) \ge \frac{\sqrt{n}}{6}\right) > 1 - e^{-n/18}.$$
 (34)

We also use the following lemma from (Shalev-Shwartz & Ben-David, 2014):

Lemma 7. Let Q to be a finite set of vectors in \mathbb{R}^n , let $\delta \in (0,1)$ and k be an integer such that

$$\epsilon = \sqrt{\frac{6log(2|Q|/\delta)}{k}} \le 3 \tag{35}$$

Let $A \in \mathbb{R}_{k \times n}$ be a random matrix with $A \stackrel{i.i.d.}{\sim} N(0, \frac{1}{k})$. Then,

$$P\left(\max_{x \in Q} \left| \frac{||Ax||^2}{||x||^2} - 1 \right| \le \epsilon \right) > 1 - \delta \tag{36}$$

Lemma 7 is a direct result of Johnson-Lindenstrauss lemma (Dasgupta & Gupta, 2003) applied to each vector in Q and using the union bound . Representing the vectors in Q as a matrix, the lemma shows that $A^{(R)}$, $A^{(C)}$ preserve matrix Frobenius norm in high probability, which is a weaker property than the RIP which holds for *any* low-rank matrix.

To prove Theorem 3, we first represent $||X - \hat{X}||_F$ as a sum three parts (lemma 8), and then give probabilistic upper bounds to each of the parts. We define $A_{\hat{U}}^{(R)} = A^{(R)}\hat{U}$ and $A_{V^T}^{(C)} = V^TA^{(C)}$. From lemma 3

 $A_{\hat{U}}^{(R)}, A_{V^T}^{(C)} \overset{i.i.d.}{\sim} N(0,1), \text{ hence } rank(A_{\hat{U}}^{(R)}) = rank(A_{V^T}^{(C)}) = r. \text{ We assume w.l.o.g that } \hat{X} = \hat{X}^{(R)} \text{ (see Algorithm 2)}.$ Therefore, from eq.(8) we have $\hat{X} = \hat{U}(A_{\hat{U}}^{(R)^T} A_{\hat{U}}^{(R)})^{-1} A_{\hat{U}}^{(R)^T} B^{(R)}.$

We denote by $A_{\hat{U}}^{(R)}{}^{\dagger} = (A_{\hat{U}}^{(R)^T} A_{\hat{U}}^{(R)})^{-1} A_{\hat{U}}^{(R)^T}$ and $A_{V^T}^{(C)}{}^{\dagger} = A_{V^T}^{(C)^T} (A_{V^T}^{(C)} A_{V^T}^{(C)^T})^{-1}$ the Moore-Penrose pseudo-inverse of $A_{\hat{U}}^{(R)}$ and $A_{V^T}^{(C)}$, respectively. We next prove the following lemma

Lemma 8. Let $A^{(R)}$ and $A^{(C)}$ be as in the GRC model and $Z^{(R)}$, $Z^{(C)}$ be some noise. Let \hat{X} be the output of SVLS. Then:

$$||X - \hat{X}||_F \le \mathbf{I} + \mathbf{II} + \mathbf{III}$$

- 1430 We want to bound each of the three parts in the formula of lemma 8. We use the following claim:
- $\begin{array}{ll} 1431 \\ 1432 \end{array} \ \ {\bf Claim} \ {\bf 1.} \ ||B^{(C,0)}-B^{(C)}_{(r)}||_2 \leq 2||Z^{(C)}||_2 \\ \end{array}$

Proof. We know that $||B^{(C)} - B^{(C)}_{(r)}||_2 \le ||B^{(C)} - B^{(C,0)}||_2$ since $rank(B^{(C)}_{(r)}) = rank(B^{(C,0)})$, and $B^{(C)}_{(r)}$ is the closest rank r matrix to $B^{(C)}$ by definition. Therefore from the triangle inequality

 y definition. Therefore from the triangle inequality $||(B^{(C,0)}-B^{(C)}_{(r)})||_2 \leq$

$$||(B^{(C,0)} - B^{(C)}_{(r)})||_{2} \le$$

$$||B^{(C)} - B^{(C)}_{(r)}||_{2} + ||B^{(C)} - B^{(C,0)}||_{2} \le$$

$$2||B^{(C,0)} - B^{(C)}||_{2} = 2||Z^{(C)}||_{2}$$
(45)

Now we are ready to prove Theorem 3. The proof uses the following inequalities for matrix norms: for any two matrices A, B (i) $||AB||_2 \le ||A||_2 ||B||_2$, (ii) $||AB||_F \le ||A||_F ||B||_2$ and (iii) if $rank(A) \le r$ then $||A||_F \le \sqrt{r}||A||_2$.

Proof. We prove (probabilistic) upper bounds on the three terms appearing in lemma 8.

1. We have

$$rank\left(\left(B^{(C,0)} - B_{(r)}^{(C)}\right)A_{V^T}^{(C)\dagger}\right) \leqslant rank\left(A_{V^T}^{(C)\dagger}\right) \leqslant r \tag{46}$$

Therefore

$$\mathbf{I} = ||(B^{(C,0)} - B_{(r)}^{(C)})A_{V^{T}}^{(C)\dagger}||_{F} \le \sqrt{r}||(B^{(C,0)} - B_{(r)}^{(C)})||_{2}||A_{V^{T}}^{(C)\dagger}||_{2}$$
(47)

Since $A_{V^T}^{(C)} \stackrel{i.i.d.}{\sim} N(0,1)$, from Corollary $2 \ ||A_{V^T}^{(C)}||_2 \leq \frac{6}{\sqrt{k}}$ for $k \geq 4r$ with probability $1 - e^{-k/18}$, hence

$$\mathbf{I} \le 4\sqrt{\frac{r}{k}}||(B^{(C,0)} - B_{(r)}^{(C)})||_2. \tag{48}$$

From Claim 1 we have bound on (37)

$$\mathbf{I} \le C_1 \sqrt{\frac{r}{k}} ||Z^{(C)}||_2$$
 (49)

with probability $1 - e^{-c_1 k}$ for absolute constants C_1, c_1 .

2. \hat{U} is orthogonal and can be omitted from II without changing the norm. Applying inequality (ii) above twice, we get the inequality:

$$\mathbf{II} = ||\hat{U}A_{\hat{U}}^{(R)\dagger}A^{(R)}(B^{(C,0)} - B_{(r)}^{(C)})A_{V^{T}}^{(C)\dagger}||_{F} \le ||A_{\hat{U}}^{(R)\dagger}||_{2}||A_{\hat{U}}^{(R)\dagger}A^{(R)}(B^{(C,0)} - B_{(r)}^{(C)})||_{F}||A_{V^{T}}^{(C)\dagger}||_{2}.$$
(50)

From Corollary 2 we know that for k>4r we have $||A_{\hat{U}}^{(R)}|^{\dagger}||_2\leq \frac{4}{\sqrt{k}}$ and $||A_{V^T}^{(C)}|^{\dagger}||_2\leq \frac{4}{\sqrt{k}}$, each with probability $>1-e^{-k/18}$. Therefore, with probability $>1-2e^{-k/18}$

$$\mathbf{II} \le \frac{16}{k} ||A^{(R)} (B^{(C,0)} - B_{(r)}^{(C)})||_F. \tag{51}$$

 $A^{(R)} \text{ and } B^{(C,0)} - B^{(C)}_{(r)} \text{ are independent and } rank(B^{(C,0)} - B^{(C)}_{(r)}) \leq 2r. \text{ Therefore we can apply lemma 7 with } k \text{ such that } \frac{k}{6} > log(2k) + \frac{k}{18} \text{ (this holds for } k \geq 40 \text{) to get with probability} > 1 - 2e^{-k/18} \text{:}$

$$\mathbf{II} \le \frac{16}{k} ||A^{(R)}(B^{(C,0)} - B_{(r)}^{(C)})||_F \le \frac{16\sqrt{2k}}{k} ||(B^{(C,0)} - B_{(r)}^{(C)})||_F \le 16\sqrt{4\frac{r}{k}} ||(B^{(C,0)} - B_{(r)}^{(C)})||_2. \tag{52}$$

From eq. (51) and (52) together with Claim 1 we have constants C_2 and c_2 such that with probability $1-3e^{-ck}$

$$II \le C_2 ||Z^{(C)}||_2 \tag{53}$$

3. $rank(A_{\hat{U}}^{(R)^{\dagger}}) \leq r$ and $||A_{\hat{U}}^{(R)^{\dagger}}||_2 \leq \frac{4}{\sqrt{k}}$ for k > 4r from corollary (2) with probability $> 1 - e^{-k/18}$: Hence with probability $> 1 - e^{-k/18}$:

$$\mathbf{III} = ||\hat{U}A_{\hat{U}}^{(R)\dagger}Z^{(R)}||_{F} = ||A_{\hat{U}}^{(R)\dagger}Z^{(R)}||_{F} \leq \sqrt{r}||A_{\hat{U}}^{(R)\dagger}Z^{(R)}||_{2} \leq \sqrt{r}||A_{\hat{U}}^{(R)\dagger}||_{2}||Z^{(R)}||_{2} \leq \frac{4\sqrt{r}}{\sqrt{k}}||Z^{(R)}||_{2}$$
(54)

hence we have constants C_3 and c_3 such that with probability $> 1 - e^{-c_3 k}$.

$$III \le C_3 ||Z^{(R)}||_2 \tag{55}$$

Combining equations (55,53,49) with lemma 8 and taking $c^{(C)} = C_1 + C_2$, $c^{(R)} = C_3$ with $c = min(c_1, c_2, c_3)$ concludes our proof.

7.5. Simulations for Large values of n

 We varied n between 10 and 1000, with results averaged over 20 different matrices of rank 3 at each point, and try to reconstruct them from k=20. We see that preference is insensitive to n. if we take $A^{(R)}$, $A^{(C)} \stackrel{i.i.d.}{\sim} N(0,1)$ instead of $N(0,\frac{1}{n})$ we will get results as in (3)

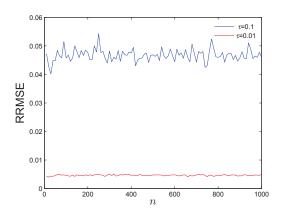


Figure 5. Reconstruction error for $n \times n$ matrix where n is varied between 10 and 1000, k = 20 and r = 3 and two different noise levels: $\tau = 0.1$ (blue) and $\tau = 0.01$ (red). Each point is an average over 20 matrices.

Now we take $n,k,r\to\infty$ while the ratios $\frac{n}{k}=5$ and $\frac{k}{r}=4$ are constant, and look at the relative error for different noise level. Again, the relative error converges rapidly to constant, independent of n,k,r.

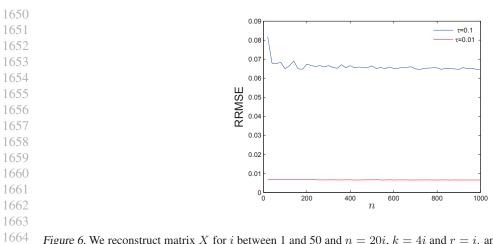


Figure 6. We reconstruct matrix X for i between 1 and 50 and n=20i, k=4i and r=i. and for different noise level $\tau=0.1$ (blue) and $\tau=0.01$ (red).