Low-Rank Matrix Recovery from Row-and-Column Affine Measurements

Abstract

We propose and study a row-and-column affine
measurement scheme for low-rank matrix recov-
ery. Each measurement is a linear combination of
elements in one row or one column of a matrix
X. This setting arises naturally in applications
from different domains. However, current algo-
rithms developed for standard matrix recovery
problems do not perform well in our case, hence
the need for developing new algorithms and the-
ory for our problem. We propose a simple algo-
rithm for the problem based on Singular Value
Decomposition (SVD) and least-squares (LS),
which we term SVLS. We prove that (a simpli-
fied version of) our algorithm can recover X ex-
actly with the minimum possible number of mea-
surements in the noiseless case. In the general
noisy case, we prove performance guarantees on
the reconstruction accuracy under the Frobenius
norm. In simulations, our row-and-column de-
sign and SVLS algorithm show improved speed,
and comparable and in some cases better accu-
racy compared to standard measurements designs
and algorithms. Our theoretical and experimen-
tal results suggest that the proposed row-and-
column affine measurements scheme, together
with our recovery algorithm, may provide a pow-
erful framework for affine matrix reconstruction.

1. Introduction

In the low-rank affine matrix recovery problem, an un-
known matrix X € Ry, xp, with rank(X) = r is
measured indirectly via an affine transformation A

R, xn, — R? and possibly with additive (typically Gaus-
sian) noise z € R%. Our goal is to recover X from the vec-
tor of noisy measurements b = A(X) + z. The problem
has found numerous applications throughout science and
engineering, in different fields such as collaborative filter-
ing(Koren et al., 2009), face recognition (Basri & Jacobs,
2003), quantum state tomography (Gross et al., 2010) and
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computational biology (Chi et al., 2013). The problem has
been studied mathematically quite extensively in the last
few years. Most attention thus far has been given to two
particular ensembles of random transformations A: (i) the
Matrix Completion (MC) setting, in which each element of
A(X) is a single entry of the matrix where the subset of
the observed measurements sampled uniformly at random
(Candes & Recht, 2009; Candes & Plan, 2010; Candes &
Tao, 2010; Keshavan et al., 2009; 2010; Recht, 2011) (ii)
Gaussian-Ensemble (GE) affine-matrix-recovery, in which
each element of A(X) is a weighted sum of all elements
of X with i.i.d. Gaussian weights (Candes & Plan, 2011;
Recht et al., 2010). Remarkably, although the recovery
problem is in general NP-hard, when r < min(nq,ng)
and under certain conditions on the matrix X or the mea-
surements or the measurements operator.A one can recover
X from d < nine measurements with high probability and
using efficient algorithms (Candes & Recht, 2009; Recht
et al., 2010; Candes & Tao, 2010; Recht, 2011). How-
ever, it is desirable to study the problem with other affine
transformations A beyond the two ensembles mentioned
above for the following reasons: (i) In some applications
we cannot control the measurements operator.A, and differ-
ent models for the measurements may be needed to allow
a realistic analysis of the problem (ii) When we can con-
trol and design the measurements operator .4, other ma-
trices may outperform the two mentioned above with re-
spect to different resources such as number of measure-
ments required, computation time and storage. The main
goal of this paper is to present and study a different set
of affine transformations, which we term row-and-column
affine measurements. This setting may arise naturally in
many applications, since it is often natural and possibly
cheap to measure a single row or column of a matrix, or
a linear combination of a few such rows and columns. For
example, (i) In collaborative filtering, we may wish to re-
voker a users-items preference matrix and have access to
only a subset of the users, but can observe their preference
scores for all items (ii) When recovering a protein-RNA in-
teractions matrix in molecular biology, a single experiment
may simultaneously measure the interactions of a specific
protein with all RNA molecules (Chu et al., 2011).

In our row and column framework the measurement oper-
ator A is represented by two matrices A, A©) which
multiply X from left and right, respectively. We focus on
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two important ensembles of A A(©): (i) Matrix Com-
pletion from single Columns and Rows (RCMC) where we
observe single entry measurements in similar to standard
matrix completion case, but the measured entries are not
scattered randomly along the matrix, but rather we pick at
random a few rows and a few columns, and measure all
entries in these rows and columns. This ensemble is imple-
mented by setting the rows (columns) of AU (A(©)) as
random vectors from the standard basis. (ii) Gaussian Row-
and-Column (GRC) measurements. Here each set of mea-
surements is a weighted linear combination of the matrix’s
rows (or columns) with the weights taken as i.i.d. Gaus-
sians. This ensemble is implemented by setting the entries
of A®) | A(©) a5i.i.d. Gaussian random variables.

The measurement operator .4 in our model does not satisfy
the standard requirements used for GE and MC. As a result,
algorithms such as nuclear norm minimization (Recht et al.,
2010; Candes & Recht, 2009) fail for our case, and differ-
ent algorithms and theory are required. However, the spe-
cific algebraic structure provided by the row-and-column
measurements, allow as to both derive efficient and simple
algorithms, as well as to analyze their performance.

1.1. Prior Work

Before giving a detailed derivation and analysis of our de-
sign and algorithms, we give here an overview of the ex-
isting designs and their properties. We concentrate here on
two properties: (i) storage required to represent the mea-
surement operator , and (ii) measurement sparsity, defined
as the sum over all measurements of the number of matrix
entries participating in each measurement. The latter prop-
erty may be related to measurement time.

Recently Cai and Zhang proposed a new design of rank one
projection (Cai et al., 2015) where each measurements is
of the form o™ X 8 where o« € R™ and 8 € R™ have i.i.d
standard Gaussian entries, and proved that nuclear norm
minimization can recover X with high probability. This is
the first model deviating from MC and GE we are aware of.
This model is different from our row-and-column model,
as each measurement is obtained by multiplying X from
both sides, whereas in our model each measurement is ob-
tained by multiplying X from either left or right. More-
over, in our model the measurements are not chosen inde-
pendently from each other but come in groups of size njor
ny (corresponding to rows or columns AU A(©))  An
advantage of rank one projection is that it leads to a sig-
nificance reduction in measurement storage needed for A
with overall O(dn; + dns) storage space. However, each
measurement is still dense and involve all matrix elements,
hence measurement sparsity is O(dninsg). In contrast, our
GRC model requires only O(d) storage for A, and ev-
ery measurements depends only on O(max(ni,n2)) ele-

ments, leading to a reduced overall time for all measure-
ments O(dni +dns). For RCMC, we need only O(%f"))
storage for .4, and measurement sparsity O(d).

In the Gaussian Ensemble model, we can look at A in ma-
trix representation A(X) = Avec(X). If A “%* N(0,1)
one can recover low rank matrix X with O(rn; + rns)
noiseless measurements using nuclear norm minimization
(Recht et al., 2010; Candes & Plan, 2011) or other meth-
ods such as Singular Value Projection (SVP) (Jain et al.,
2010), which is optimal up to constants. Recovery in this
model is robust to noise, with only a small increase in mea-
surements. The main disadvantage of this model is that de-
sign requires O(dnins) storage space for r A, which could
be problematic for large matrices. Another possible dis-
advantage of this method is that measurements are dense
- each measurement represents a linear combination of all
O(n1n2) matrix entries, and the time required to calculate
A(X) is in general O(dnnz), which could be problematic
for large nq, no.

In the standard matrix completion problem (Candes &
Recht, 2009) where we can recover X from single entries
in X chosen uniformly at random using nuclear norm mini-
mization (Cai et al., 2010; Toh & Yun, 2010; Candes & Tao,
2010; Ma et al., 2011; Recht, 2011) or using other meth-
ods such as SV D and gradient descent (Keshavan et al.,
2009; 2010). This model has the lowest storage require-
ments O(d) and measurement sparsity O(d). However,
recovery guarantees for this model are quite weak: it re-
quires some assumptions on X such as incoherent (2) and
the number of measurements required for recovery of X is
higher compared to the Gaussian Ensemble.

2. Preliminaries and Notations

We denote by R,,, «», the space of matrices of size 11 X na,
by O, xn, the space of matrices of size n; X ng with or-
thonormal columns, and by M

nyxn, the space of matrices
of size ny X ny and rank < r.

We denote by || - || 7, the matrix Frobenius norm, by || - ||
the nuclear norm, and by || - ||z the spectral norm. For a
vector, || - || denotes the standard /5 norm.

For X € R, xn,We denote by span(X) the subspace of
R™ spanned by the columns of X and define Px to be the
orthogonal projection into span(X).

For a matrix X we denote by X;, the i-th row, by X, ; the
j-th column and by X; the (4, j) element. For two sets of
indices I, .J, we denote by X the sub-matrix obtained by
taking the rows with indices in I and columns with indices
in J of X. We denote by [£] the set of indices 1,.., k. We
denote by vec(X) the (column) vector obtained by stacking
all the columns of X on top of each other.



Submission and Formatting Instructions for ICML 2015

. i.i.d. .
We use the notation X “~" G to denote a random matrix
X withii.d. entries X;; ~ G.

For a matrix X € M7 let X = USVT be the
Singular Value Decomposition (SV D) of X where U €
Onixrs V. € Orxn, and & = diag(o1(X),...,0.(X))
with 01(X) > 03(X).. > o,(X) > 0 the (non-zero)
singular values of X (we omit the zero singular values
and their corresponding vectors from the decomposition).
For a general matrix X € Ry, x,, we denote by X,
the top-r singular value decomposition of X, X =

Ul Ziriir) Valy-

Our model assumes two affine transformations applied to
X , representing rows and columns, B(¢:0) = X A(©)
and B0 = A(R) X achieved by multiplications with
two matrices AP € Ry, and A € R 0.
We observe noisy observations of these transformations,
B B(©) obtained by applying additive noise:

AR x 4 7z(B) = pR) . x A©) 4 7(C) = BO) (1)

)
where the total number of measurements is d = k(R)m +
n2k(@), and ZH) € R, .2 € Ryo) .y, are two
zero-mean noise matrices. Our goal is to recover X from
the observed measurements B(¢) and B®) . To achieve
this goal, we define the loss function

F(X) =|APX = BP| +[| XA — BOE @)
and solve the least squares problem:

Minimize F(X) s.t. X € MELTI)XM. (3)

If 20, 7(C) it N(0,72) , minimizing the loss function
in eq. (2) is equivalent to maximizing the log-likelihood of
the data, giving a statistical motivation for the above score.
Problem (3) is non-convex due to the non-convex rank con-
straint rank(X) < r.

Our problem is a specialization of the general affine matrix
recovery problem (Recht et al., 2010), in which a matrix is
measured through a general affine transformation A, with
b = A(X)+ z. We consider next and throughout the paper

two specific random ensembles of measurement matrices
AR)A©):

1. Row and Column Matrix Completion (RCMC): In
this ensemble each row of A and each column of
A©) is a vector of the standard basis e; for some
J - thus each measurement BZ-(JR) or Bi(jc)is obtained

from a single entry of X. We define a row-inclusion

probability p{/Y)and column inclusion probability p(©)
such that each row (column) of the matrix X will
be measured with probability p/?)(p(©)). More pre-
cisely, we define 7y, ..,7,, i.i.d. Bernoulli variables,

P(r; = 1) = p, and include e; as a row in A
if and only if r; = 1. Similarly, we define c;...cp,,
i.i.d. Bernoulli variables, P(c; = 1) = p(©), and in-
clude e; as a column in A(©) if and only if ¢; = 1.
The expected number of observed rows (columns) is
ER) = nip(E(©) = nyp©). The model is very
close to the possibly more natural model of picking
k() distinct rows and k(©) distinct columns at ran-
dom for fixed k%), k(©)_ but allows for easier analy-
sis.

2. Gaussian Rows‘a.nd Columns (GRC): In this ensem-
ble AR), A(C) “% N (0, 1). Bach observation Bi(f)

or Bi(f) is obtained by a weighted sum of a single row
or column of X, with i.i.d. Gaussian weights.

2.1. Comparison to Standard Designs

The rows-and-columns design presented above is distinct
from standard measurements ensembles proposed and stud-
ied in the literature. It is instructive to compare the
GRC ensemble to the Gaussian Ensemble (GE) model
(Candes & Plan, 2011), where using the matrix represen-
tation A(X) = Avec(X) with A € Ryxpn,n,, We take
A "% N(0,1). For the latter, the following r-Restricted
Isometry Property (RIP) can be used:

Definition 1. (r-RIP) Let A : R, xpn, — R< be a linear
map. For every integer r with 1 < r < min(ny,ns), de-
fine the r-Restricted Isometry Constant to be the smallest
number €, such that

(1 —e)lIX[lr < [JAX)[[F < T +e)lIX[lr 4
holds for all matrices X of rank at most r.

The GE model satisfies the r-Restricted Isometry Property
(RIP) for d = O(rn) with high probability (Recht et al.,
2010). Based on this property it is known that nuclear
norm minimization (Recht et al., 2010; Candes & Plan,
2011) and other algorithms such as singular value projec-
tion (Jain et al., 2010) can recover X with high probability.
Unlike GE, in our GRC model the operator A(X) doesn’t
satisfy the RIP, and nuclear norm minimization fails. In-
stead, AUY | A(©) preserve matrix Frobenius norm in high
probability, which is a weaker property than the RIP which
holds for any low-rank matrix. (see lemma 7 in Appendix).

We next compare the RCMC model to the standard Matrix
Completion model (Candes & Recht, 2009), in which sin-
gle entries are chosen at random to be observed. Unlike
GE, for MC incoherence conditions on X are required in
order to recover X (Candes & Recht, 2009) :

Definition 2. (Incoherence). Let U be a subspace of R"
of dimension r, and Py be the orthogonal projection on U.
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Then the coherence of U (with respect to the standard basis
{ei}) is defined as

u(U)="maz | Py (e:)| 5)

We say that a matrix X € R, «,, is pu-incoherent if for the
SVD X =UXVT we have maz(u(U), u(V)) < p.

When X is incoherent, and when known entries are sam-
pled uniformly at random from X, several algorithms (Ke-
shavan et al., 2009; Cai et al., 2010; Jain et al., 2010) suc-
ceed to recover X with high probability. In particular, nu-
clear norm minimization has gained popularity as a solver
for the standard MC problem due to it’s recovery guaran-
tees, and a convenient representation as a convex optimiza-
tion problem with availability of many iterative algorithms
for the problem. However, nuclear norm minimization fails
for the RCMC design, even when the matrix X is incoher-
ent, as shown by the next example:

Example: Take X € R, ., for € N with X;; =
1¥(i,5) € [n] x [n]. Thus || X||. = n. Take k() = k() =
7. One can set all unknown entries to 0.5, giving a matrix
X of rank 2 with oy (Xo) = (20" 5 (X)) = 2D

3
therefore || Xo||« = ”T‘/E < ||X]]+ and nuclear norm min-
imization fails to recover the correct X. In Section 3
we present our SVLS algorithm, which does not rely on

nuclear-norm minimization.

w|3

3. Algorithms for Recovery of X

In this section we give an efficient algorithm which we call
SVLS (Singular Value Least Squares), SVLS very easy to
implement, first we give algorithm 1 for the noiseless case
and than we expend our algorithm to the general case.

3.1. Noiseless Case

In the noiseless case we reduce the optimization problem
3 to solving a system of linear equations, and provide
a closed-form estimator. We then give conditions under
which with high probability, the solution is unique and is
equal to the true matrix X. If rank(A™T) = r one can
write the resulting estimator X in closed-form as follows:

X =UY = U[UTA(R)TA(R)U]AUTA(R)TB(R) ©)

Algorithm 1 doesn’t treat the row and column measure-
ments symmetrically. We can apply the same algorithm,
but changing the role of rows and columns. The resulting
closed form solution is then:

X = BOAO(VTAC A )=1§ T (7)

for an orthogonal matrix 1% representing a basis for the rows
of X. Since the algorithm uses matrix inversion/Gaussian

Algorithm 1
Input A A©) B(R) B(C) and rank r

1. Compute a basis (of size r) to the row space of
B(©) using Gaussian elimination, represented as the
columns of a matrix U € R,,, «;-

2. Solve the linear system Bﬁf’) = AB[T Y,; for each
7 = 1,..,ny and write the solutions as a matrix ¥ =
Ye1..Yen,.

3. OutputX =UY

elimination steps, it is crucial that we have exact noiseless
measurements. Next, we modify the algorithm to work also
for noisy measurements.

3.2. General (Noisy) Case

In the noisy case we seek a matrix X minimizing the loss
F in eq. (2). The minimization problem is non-convex
and there is no known algorithm with optimality guaran-
tees. We propose the following algorithm which empiri-
cally returns a matrix estimator X with a low value of the
loss F':

Algorithm 2 SVLS
Input A A©) B(R) B(C) and rank r

1. compute B(©) = USVT | the SVD of B, (Uisa
basis for the columns space of B(©))

2. Find the least-squares solution Y = argminy ||
BB — ABUY||p. If rank(APU) = r we can
write Y in closed form as before:

Y = [0TABR AR I-1gT AR BR) - (g)

3. Return the estimate X(®) = UY.

4. Repeat 1-3 with replacing roles of the columns and the
rows and get matrix X (¢)

5. Set X = argmin ¢y o) F(X)

3.2.1. GRADIENT DESCENT

SVLS returns an estimator X of X, which may not min-
imize the loss function in eq. (2). We therefore perform
an additional gradient descent stage starting from X to
achieve an estimator with lower loss (while still a local
minima due to the non-convexity of the problem). SVLS
can be thus viewed as a fast method for providing a desir-
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able starting point for local-search algorithms. The details
of the gradient descent are given in Appendix Section 7.2.

3.3. Estimation Of Unknown Rank

In real life problems, one doesn’t know the true rank of
a matrix and should estimate it from data. Our rows-
and-columns sampling design is particularly suitable for
rank estimation since rank(B(©:?)) = rank(B"0) =
rank(X) with high probability when enough rows and
columns are sampled. In the noiseless case we can estimate
rank(X) by f=rank(B(©:0)).

For the noisy case we can estimate rank(X) from
B(©) B We used the popular elbow method to esti-
mate rank(B(©)) in the following way

. i B
#O) — argmaz;c,c)_q <U+§(B(C)))> )

(R)

We compute similarly 7(9) from B(®) and take the average

. N A(C) 4 a(0)
as our rank estimator, # = round (%)

Modern methods for rank estimation from singular values
(Gavish & Donoho, 2013) (Gavish & Donoho, 2014) can
be similarly applied to B, B(®) and averaged, and may
yield more accurate rank estimates.

4. Performance Guarantees

We show guarantees on the accuracy of the estimator X
returned by SVLS. Our guarantees are probabilistic, with
respect to randomizing the design matrices A A(©) For
the noiseless case we give conditions which are close to
optimal for exact recovery.

4.1. Noiseless Case

A rank r matrix of size nq X ng has r(n; +ne —r) degrees
of freedom, and can therefore not be recovered by fewer
measurements. Setting k(Y = k(©) = r gives precisely
this minimal number of measurements. We next show that
this number suffices, with probability 1, to guarantee accu-
rate recovery of X in the GRC model. In the RCMC model
we need an additional incoherence assumption on X and a
larger number of measurements in order to guarantee accu-
rate recovery with high probability.

Lemma 1. Ler X;,Xs € Mﬁ,ﬁ)w and AR ¢
Ricr) wn, A € R, oy such that rank(AB X;) =
rank(X,A©) = r. If ARX, = AWX, and

X1 A©) = X5 A©) then X, = Xo.

Proof. First, rcmk(XQA(c)) = rank(XlA(C)) = 7
and rank(AX,) = rank(ARX)) =
Since  span(X,A)), span(XoAC))  are  sub-
spaces of span(Xy),span(Xsy) respectively, and

dim(span(X3)) = r we get span(Xs) =
span(XoA©)) = span(X1A©)) = span(Xi), and
we define U € O, x, a basis for this subspace.

For Xi, X, there are Y7,Y5 € R,y,, such that X; =
UY1,Xo = UYs. Hence ABDUY, = ARUY,.
Since rank‘(A(R)UYl) = rand U € O, x, we get
rank(A®U) = r, hence the matrix UT AR AR is
invertible, Y7 = Y5, and X1 = UY; = UYs; = Xos. ]

Lemma 2. Let X € M;TI)XM such that X =
USVT, and AP € Rymu,, A9 € R, o
such that rank(AX) = rank(XA©)) = r. If
AR A(C),AB(R’O)7 B(©9) and r is the input of SVLS then
the output X satisfies

AP x = AW X XA = X A© (10)

Proof. span(XA©)) C span(X) and rank(XA©)) =
mnngA(C)) = 7, hence span(XA©)) = span(X)

and U from stage 1 in SVLS is a basis for span(X).
We can writt X = UL for some matrix L € Ry xny»
Since rank(A®UL) = rank(U) = r , we have
rank(A®U) = r. Thus eq. (8) gives X in closed form
and we get:

AR X = ARGOT AR AR [)-10T AR pRO) —
ABTOT AR AR 10T AR AR =
ABTL = AWX (1)

XA©) = gloT AR AB® 17T AR AR X A©) =
UOTAB® AR G107 AR AR LAC) =

ULA® = XxA© (12

O

4.1.1. EXACT RECOVERY FOR GRC

For the GRC model, the above lemma can be used to prove
exact recovery of X with the minimal possible number of

measurements:

Lemma 3. Let V € Oy, and ALY € R, be a random
matrix AC) "kt N(0,02). Then VT A©) € R,y i
N(0,02).

The proof of this lemma is in the appendix (7.1).

Theorem 1. Let X be the output of Algorithm SVLS in
the GRC model with Z(?) and Z") equal to zero and
EF) E©) > ¢ Then P(X = X) = 1.

Proof. Let U SVT be the SVD of X, from lemma 3
and since the measure of low rank matrices is zero and
E(©) > 1 we get that rank(VT AC) = r, hence if B(®) =
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USVTA©) rank(B©)) = rank(USVTAC)) = 7 In
the same way rank(B) = r. hence combining lemma
2 with lemma 1 give us the require result O

4.1.2. EXACT RECOVERY FOR RCMC

Unlike in the GRC model we can’t promise uniqueness
of solution in the RCMC model. We wish to find func-
tion such that for any incoherence measure we can find the
probability for reconstruct X. We assume the Bernoulli
rows and columns model as described in Section 2 and as-
sume for simplicity that p() = p(©) = p (and k() =
E©) = k). We prove that if U € O,, . is orthonormal then
with high probability p=!||[UT AR ABY — pI,||, < 1.
Because U is orthonormal, this is equivalent to

p Y UUT AR ABYUT — puUT|), < 1
p Y|PuP Py —pPulla <1 (13)

where Py = UUT,PA(R)T =AD" AR) We generalize
Theorem 4.1 from (Candes & Recht, 2009).

Lemma 4. Suppose A as in the rows and columns
model with probability p, and U € Oy, with p(U) =
2max||Py(e;)||* = p. Then there is a numerical con-

stant Cr such that for all 3 > 1, U‘CR\/W <1

then:

_ Blog(n)r
P <p 1HPUPA(R)TPU —pPUH2 < Cpgr gp(n)u

>1-3n"" (14)

The proof of lemma 4 is built upon (yet generalizes) the
proof of Theorem 4.1 from (Candes & Recht, 2009) and is
given in Appendix (7.3).

Theorem 2. Let X = USVT be the SVD of X € Rysn,
and mazx(u(U), n(V)) < p. Take AT and A©) as in
the RCMC model without noise and probability p = % Let

B > 1suchthat Cry/ W < 1 where Cr as in lemma
4 and let X is the output of SVLS,. Then P <X = X) >

1 — 6n~" provided that Cr+/ % < 1.

Proof. From lemma 4 we have that with probability > 1 —
6n ", p~|[pI, — UT AP APy < Land p~*||pI, -
VT A A©) V|3 < 1. Since the singular values of pI,. —
UTAB" AR are |p — o;(UTAR" AR for 1 <
i < r, we have that

p—UT-(UTA(R)TA(R)U) <o (pI,.—UTA(R)TA(R)U) <p
= 0<o,

UTAB® ABT)  (15)

and similarly for VT A Ay, Therefore
rank(AU) = rank(VTA©)) = 7 and
rank(AX) = rank(XA©) = ¢ with
probability > 1 — 6n~”, hence from lemma 2

ARX = AB X X A©) = X A©) and from lemma (1)
X =X. O]

Remark 1. The combination of row and column measure-
ments is crucial in order to guarantee recovery. If, for ex-
ample we observe only rows then even with n — lobserved
rows and rank r = 1 we can only determine the unobserved
row up to a constant, and thus cannot recover X uniquely.

4.2. General (Noisy) Case

In the noisy case we can’t ensure to recover the exact X . In-
stead, we bound the reconstruction error || X — X || where
X is the output of Algorithm (2).Here, we give bounds
on the error for the GRC model and similar models un-

der some conditions. For simplicity, we show the result for
LB = (O) — [

We focus on the high dimensional case k£ < n, where num-
ber of measurements is low. In this case our bound is simi-
lar to the bound of the Gaussian Ensemble (GE). In (Candes
& Plan, 2011) Candes and Plan proved that with high prob-

ability || X — X||p < Cqy/ "’;2 for some constant C'¢; for

GE. We next prove an analogous result for our GRC model.
Theorem 3. Let A" and A©) with k > max(4r, 40) be

as in the GRC model with noise matrices ZWB) 7(©) Let
X be the output of SVLS. Then with probability > 1—5¢°*:

~ T r
1K= Rllr < & [HIZO 4o, 21127 6)

where ¢ ) ¢(©) | ¢ are absolute constants.

Theorem 3 applies for any Z(©) and Z(®), If k < n
and Z(R) 7(C) “id N(0,72), then from eq. (32) we
get maz(||ZU)]|,]|Z2()||) < 47y/n with probability
1 — e=2". We therefore get the next Corollary for i.i.d.
Gaussian noise:

Corrolary 1. Let AT, A©) as in the GRC withn > k >
maz(4r,40), model and 7" | 7(©) 5 N(0,72). Then
with probability > 1 — 5e~* — e=2n;

5 T2nr
IX = X[lr <4 (P 4+ ) [ T2 an

5. Simulations Results

We studied the performance of our algorithm using simula-
tions. We measured the reconstruction accuracy using the
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Figure 1. Reconstruction rates for matrices with dimension n =
150 and » = 3 where d is the number of known entries varied
between 0 to 8000. SVT and optSpace are applied to the standard
MC design and Algorithm 1 to RCMC. For each d we sampled
50 matrices and calculated the reconstruction rate as discovered
in main text.

relative Root-Mean-Squared-Error (RMSE), defined as

RRMSE = RRMSE(X,X) = ||X — X||r/||X]||F.
(18)
For simplicity, we concentrated on square matrices with
n1 = ng = n and used an equal number of row and col-
umn measurements, k() = k(©) = k . In all simula-

tions we sampled a random rank-r matrix X = UVT with

U,V €Ryuxr, U,V "<" N(0,0?).
In all simulations we assumed that rank(X) is unknown
and estimated using the elbow method in eq. (9).

5.1. Row-Column Matrix Completion (RCMC)

In the noiseless case we compared our design to the stan-
dard matrix completion. We compared the reconstruction
rate (probability of exact reconstruction of X as function of
the number of measurements d) for the RCMC design with
Algorithm SVLS to the reconstruction rate for the standard
MC design with the optSpace(Keshavan et al., 2010) and
SVT(Cai et al., 2010) algorithms. To allow for numeri-
cal errors, for each simulation yielding X, X we defined
recovery as successful if their RRM SFE was lower than
1073, and for each value of d recorded the percentage of
simulations for which recovery was successful . In Fig-
ure 5.1 we show results for n = 150, = 3 and 0 = 1.
SVLS reconstruct X with optimal number of measure-
ments d = r(2n—r) = 894 yielding -4 ~ 0.04 with prob-
ability 1 while MC with optSpace and SVT need roughly 3-
fold and 8-fold more measurements, respectively, to guar-
antee exact recovery.

The improvement in accuracy is not due to our design or

SVT
optSpace |
—SVLS

+

+
T

| ks
2 B g
16

Figure 2. Box-plots represent the distribution of RRMSE as
a function of the number of column and row measurements k
over 50 different sampled matrices X = UV? with U,V -
N(0,1) and Z® | (@) "X N(0,0.252). OptSpace (red) fails
to recover X on many instances while SVLS (blue) performs very
well on all of them. SVT(green) fails to recover X for all in-
stances. The trimming of dense rows and columns in OptSpace
was skipped, since such trimming in our settings may delete all
measurement information for low k.

our algorithm alone, but due to their combination. We com-
pared our method to optSpace and SVT for RCMC. We
sampled a matrix X withn = 100 » = 3 and 0 = 1 noise
level 72 = 0.252 and varied the number of row and col-
umn measurements k Figure 5.1 shows that while SVLS is
very stable even for small &, the optSpace has a lot of out-
liers and SVT which minimize the nuclear norm achieves
poor accuracy. (Remark: The algorithm optSpace has a
trimming step which delete dense columns. We omitted
this step in the RCMC model since it would delete all the
known columns and rows and it’s not stable for this type of
measurements, but it still get better result than SVT.)

Next, we compared our RCMC to standard MC. We sam-
pled X as before with U,V &€ Rjgoox, with standard
Gaussian distribution, different rank and different noise ra-
tio. The observations were corrupted by additive Gaussian
noise Z with relative noise NR = ||Z||r/|| X||F-

For small number of measurements our algorithm gives
better results than the standard MC, and is comparable to
MC whem the number of measurements is large. More-
over, our algorithm is significantly faster than the other two
algorithms in Table 1.

5.2. Gaussian Rows and Columns (GRC)

We tested the performance of the GRC model with
A A©) bk N (0, 1) (for getting independence with
n) and with X = UV*® where every entry in U,V has

N(0, \%) entry, we compere our results to the Gaussian
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Table 1. RRM S E and time in seconds (in parenthesis) for SVLS
applied to RCMC, and optSpace and SVT applied to the standard
MC. Results represent average of 5 different random matrices.
SVLS is faster than optSpace and SVT by 1 to 3 orders of mag-
nitudes, and shows comparable or better RRM SE in all cases.

NR d T SVLS optSpace SVT
1072 120156 | 10 | 0.063(0.15) | 0.005(20.8) | 0.0096(18.7)
1071| 120156 | 10 | 0.064(0.15) 0.04(21.7) 0.056(11)
1 | 120156 | 10 | 0.64(0.16) | 0.49(24.5) 0.52(1)
1072| 59100 20 | 0.029(0.12) 0.97(25.6) 0.76(4.4)
1071 59100 20 0.3(0.12) 0.98(40.1) 0.86(6.5)
10~1| 391600 | 50 0.081(0.7) 0.05(1200) 0.069(13)
1 391600 | 50 0.72(0.6) 0.61(1300) 0.59(5)
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Figure 3. Relative error RRM SE' as function of d number of
measurements ,where we take X € M%)()xmo, d is varied from
400 to 4000 and for different noise levels: = = 0.1,0.01 and
0.001. For every point we simulated 5 random matrices and com-
puted the average relative error.

ensemble model (GE) for getting same scale of measure-
ments we normalize A(X) with n. In Figure 3 we take
n = 100 and » = 2 and change d = 2nk the number of
measurements , (where AUY) € Ry, and A©) € R,, 1),
in addition we added Gaussian noise Z™) and Z(©) with
different level of noise 7. Even for small & our method
give good results. The error decays at a rate of v/k for the
GE model we use algorithm APGL (Toh & Yun, 2010) for
nuclear norm minimization.

In the next tests we ran SVLS on different noise levels. We
take n = 1000 and k£ = 100 with different rank level every
entry in Z(©), Z(F) S N(0,72) and different values of
7. Results are shown in Figure 4. The change in the relative
error RRM S'F is linear in 7 while the rate depends on r.

We next examined the behaviour of the RRMSE when
n — oo and when n, k,r — oo together. Results (shown
in Appendix Section 7.5) show that when properly scaled,
the RRM SE error is not sensitive to the value of n and
other parameters, in agreement with Theorem 3.

0.04

r=2
r=4
r=6 |
r=8

0.035F

0.025

0.021

RRMSE

0.015F

0.011

0.005

Figure 4. For X € Riooox1000 of different ranks , we plot
the RRMSE as a function of 7 varied from O to 0.1. For
each curve we fitted a linear regression line, with fitted slopes
0.145,0.208,0.25, 0.3 for r = 2,4, 6, 8, respectively. The slope
is roughly proportional to /7 in concordance with the error bound
in Theorem 3 but further investigation of the relation using exten-
sive simulations is required in order to evaluate the dependency
of the recovery error in 7 in a more precise manner.

6. Discussion

We introduced a new measurements ensemble for low rank
matrix recovery where every measurements is an affine
combination of a row or column of X. We focused on two
models: matrix completion from single columns and rows
(RCMC) and matrix recovery from Gaussian combination
of columns and rows (GRC). We proposed a fast algorithm
for this ensemble. For the RCMC model we proved that in
the noiseless case our method recovers X with high prob-
ability and Simulation results show that the RCMC model
outperform the standard approach for matrix completion in
both speed and accuracy for models with small noise.

For the GRC model we proves that our method return X
with optimal number of measurements in the noiseless case
and gave am upper bounds on the error for the noisy case.
For RCMC, our simulations show that the RCMC design
may achieve comparable or favorable results, compared to
the standard MC design, especially for low noise level.
Proving recovery guarantees for this RCMC model is an
interesting challenge.

Our proposed measurement schemes is not restricted to re-
covery of low-rank matrices. One can employ this mea-
surement scheme and recover X by minimizing other ma-
trix norms. This direction can lead to new algorithms that
may improve matrix recovery for real datasets.
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