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Low-Rank Matrix Recovery from Row-and-Column Affine Measurements

Abstract

We propose and study a row-and-column affine

measurement scheme for low-rank matrix recov-

ery. Each measurement is a linear combination of

elements in one row or one column of a matrix

X . This setting arises naturally in applications

from different domains. However, current algo-

rithms developed for standard matrix recovery

problems do not perform well in our case, hence

the need for developing new algorithms and the-

ory for our problem. We propose a simple algo-

rithm for the problem based on Singular Value

Decomposition (SVD) and least-squares (LS),

which we term SVLS. We prove that (a simpli-

fied version of) our algorithm can recover X ex-

actly with the minimum possible number of mea-

surements in the noiseless case. In the general

noisy case, we prove performance guarantees on

the reconstruction accuracy under the Frobenius

norm. In simulations, our row-and-column de-

sign and SVLS algorithm show improved speed,

and comparable and in some cases better accu-

racy compared to standard measurements designs

and algorithms. Our theoretical and experimen-

tal results suggest that the proposed row-and-

column affine measurements scheme, together

with our recovery algorithm, may provide a pow-

erful framework for affine matrix reconstruction.

1. Introduction

In the low-rank affine matrix recovery problem, an un-

known matrix X ∈ Rn1×n2 with rank(X) = r is

measured indirectly via an affine transformation A :
Rn1×n2

→ R
d and possibly with additive (typically Gaus-

sian) noise z ∈ R
d. Our goal is to recover X from the vec-

tor of noisy measurements b = A(X) + z. The problem

has found numerous applications throughout science and

engineering, in different fields such as collaborative filter-

ing(Koren et al., 2009), face recognition (Basri & Jacobs,

2003), quantum state tomography (Gross et al., 2010) and

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

computational biology (Chi et al., 2013). The problem has

been studied mathematically quite extensively in the last

few years. Most attention thus far has been given to two

particular ensembles of random transformations A: (i) the

Matrix Completion (MC) setting, in which each element of

A(X) is a single entry of the matrix where the subset of

the observed measurements sampled uniformly at random

(Candès & Recht, 2009; Candès & Plan, 2010; Candès &

Tao, 2010; Keshavan et al., 2009; 2010; Recht, 2011) (ii)

Gaussian-Ensemble (GE) affine-matrix-recovery, in which

each element of A(X) is a weighted sum of all elements

of X with i.i.d. Gaussian weights (Candès & Plan, 2011;

Recht et al., 2010). Remarkably, although the recovery

problem is in general NP-hard, when r ≪ min(n1, n2)
and under certain conditions on the matrix X or the mea-

surements or the measurements operatorA one can recover

X from d ≪ n1n2 measurements with high probability and

using efficient algorithms (Candès & Recht, 2009; Recht

et al., 2010; Candès & Tao, 2010; Recht, 2011). How-

ever, it is desirable to study the problem with other affine

transformations A beyond the two ensembles mentioned

above for the following reasons: (i) In some applications

we cannot control the measurements operatorA, and differ-

ent models for the measurements may be needed to allow

a realistic analysis of the problem (ii) When we can con-

trol and design the measurements operator A, other ma-

trices may outperform the two mentioned above with re-

spect to different resources such as number of measure-

ments required, computation time and storage. The main

goal of this paper is to present and study a different set

of affine transformations, which we term row-and-column

affine measurements. This setting may arise naturally in

many applications, since it is often natural and possibly

cheap to measure a single row or column of a matrix, or

a linear combination of a few such rows and columns. For

example, (i) In collaborative filtering, we may wish to re-

voker a users-items preference matrix and have access to

only a subset of the users, but can observe their preference

scores for all items (ii) When recovering a protein-RNA in-

teractions matrix in molecular biology, a single experiment

may simultaneously measure the interactions of a specific

protein with all RNA molecules (Chu et al., 2011).

In our row and column framework the measurement oper-

ator A is represented by two matrices A(R), A(C) which

multiply X from left and right, respectively. We focus on
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two important ensembles of A(R), A(C): (i) Matrix Com-

pletion from single Columns and Rows (RCMC) where we

observe single entry measurements in similar to standard

matrix completion case, but the measured entries are not

scattered randomly along the matrix, but rather we pick at

random a few rows and a few columns, and measure all

entries in these rows and columns. This ensemble is imple-

mented by setting the rows (columns) of A(R) (A(C)) as

random vectors from the standard basis. (ii) Gaussian Row-

and-Column (GRC) measurements. Here each set of mea-

surements is a weighted linear combination of the matrix’s

rows (or columns) with the weights taken as i.i.d. Gaus-

sians. This ensemble is implemented by setting the entries

of A(R), A(C) as i.i.d. Gaussian random variables.

The measurement operator A in our model does not satisfy

the standard requirements used for GE and MC. As a result,

algorithms such as nuclear norm minimization (Recht et al.,

2010; Candès & Recht, 2009) fail for our case, and differ-

ent algorithms and theory are required. However, the spe-

cific algebraic structure provided by the row-and-column

measurements, allow as to both derive efficient and simple

algorithms, as well as to analyze their performance.

1.1. Prior Work

Before giving a detailed derivation and analysis of our de-

sign and algorithms, we give here an overview of the ex-

isting designs and their properties. We concentrate here on

two properties: (i) storage required to represent the mea-

surement operator , and (ii) measurement sparsity, defined

as the sum over all measurements of the number of matrix

entries participating in each measurement. The latter prop-

erty may be related to measurement time.

Recently Cai and Zhang proposed a new design of rank one

projection (Cai et al., 2015) where each measurements is

of the form αTXβ where α ∈ R
n1 and β ∈ R

n2 have i.i.d

standard Gaussian entries, and proved that nuclear norm

minimization can recover X with high probability. This is

the first model deviating from MC and GE we are aware of.

This model is different from our row-and-column model,

as each measurement is obtained by multiplying X from

both sides, whereas in our model each measurement is ob-

tained by multiplying X from either left or right. More-

over, in our model the measurements are not chosen inde-

pendently from each other but come in groups of size n1or

n2 (corresponding to rows or columns A(R), A(C)). An

advantage of rank one projection is that it leads to a sig-

nificance reduction in measurement storage needed for A
with overall O(dn1 + dn2) storage space. However, each

measurement is still dense and involve all matrix elements,

hence measurement sparsity is O(dn1n2). In contrast, our

GRC model requires only O(d) storage for A, and ev-

ery measurements depends only on O(max(n1, n2)) ele-

ments, leading to a reduced overall time for all measure-

ments O(dn1+dn2). For RCMC, we need only O(dlog(n)
n

)
storage for A, and measurement sparsity O(d).

In the Gaussian Ensemble model, we can look at A in ma-

trix representation A(X) = Avec(X). If A
i.i.d.∼ N(0, 1)

one can recover low rank matrix X with O(rn1 + rn2)
noiseless measurements using nuclear norm minimization

(Recht et al., 2010; Candès & Plan, 2011) or other meth-

ods such as Singular Value Projection (SVP) (Jain et al.,

2010), which is optimal up to constants. Recovery in this

model is robust to noise, with only a small increase in mea-

surements. The main disadvantage of this model is that de-

sign requires O(dn1n2) storage space for r A, which could

be problematic for large matrices. Another possible dis-

advantage of this method is that measurements are dense

- each measurement represents a linear combination of all

O(n1n2) matrix entries, and the time required to calculate

A(X) is in general O(dn1n2), which could be problematic

for large n1, n2.

In the standard matrix completion problem (Candès &

Recht, 2009) where we can recover X from single entries

in X chosen uniformly at random using nuclear norm mini-

mization (Cai et al., 2010; Toh & Yun, 2010; Candès & Tao,

2010; Ma et al., 2011; Recht, 2011) or using other meth-

ods such as SV D and gradient descent (Keshavan et al.,

2009; 2010). This model has the lowest storage require-

ments O(d) and measurement sparsity O(d). However,

recovery guarantees for this model are quite weak: it re-

quires some assumptions on X such as incoherent (2) and

the number of measurements required for recovery of X is

higher compared to the Gaussian Ensemble.

2. Preliminaries and Notations

We denote by Rn1×n2
the space of matrices of size n1×n2,

by On1×n2 the space of matrices of size n1 × n2 with or-

thonormal columns, and by M(r)
n1×n2

the space of matrices

of size n1 × n2 and rank 6 r.

We denote by || · ||F , the matrix Frobenius norm, by || · ||∗
the nuclear norm, and by || · ||2 the spectral norm. For a

vector, || · || denotes the standard l2 norm.

For X ∈ Rn1×n2
we denote by span(X) the subspace of

R
n1 spanned by the columns of X and define PX to be the

orthogonal projection into span(X).

For a matrix X we denote by Xi• the i-th row, by X•j the

j-th column and by Xij the (i, j) element. For two sets of

indices I, J , we denote by XIJ the sub-matrix obtained by

taking the rows with indices in I and columns with indices

in J of X . We denote by [k] the set of indices 1, .., k. We

denote by vec(X) the (column) vector obtained by stacking

all the columns of X on top of each other.



220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Submission and Formatting Instructions for ICML 2015

We use the notation X
i.i.d.∼ G to denote a random matrix

X with i.i.d. entries Xij ∼ G.

For a matrix X ∈ M(r)
n1×n2

let X = UΣV T be the

Singular Value Decomposition (SV D) of X where U ∈
On1×r, V ∈ Or×n2 and Σ = diag(σ1(X), ..., σr(X))
with σ1(X) ≥ σ2(X).. ≥ σr(X) > 0 the (non-zero)

singular values of X (we omit the zero singular values

and their corresponding vectors from the decomposition).

For a general matrix X ∈ Rn1×n2
we denote by X(r)

the top-r singular value decomposition of X , X(r) =
U•[r]Σ[r][r]V

T
•[r].

Our model assumes two affine transformations applied to

X , representing rows and columns, B(C,0) = XA(C)

and B(R,0) = A(R)X, achieved by multiplications with

two matrices A(R) ∈ Rk(R)×n1
and A(C) ∈ Rn2×k(C) .

We observe noisy observations of these transformations,

B(R), B(C) obtained by applying additive noise:

A(R)X + Z(R) = B(R) ; XA(C) + Z(C) = B(C) (1)

where the total number of measurements is d = k(R)n1 +
n2k

(C), and Z(R) ∈ Rn1×k(R) ,Z(C) ∈ Rk(C)×n2
are two

zero-mean noise matrices. Our goal is to recover X from

the observed measurements B(C) and B(R) . To achieve

this goal, we define the loss function

F(X) = ||A(R)X −B(R)||2F + ||XA(C) −B(C)||2F (2)

and solve the least squares problem:

Minimize F(X) s.t. X ∈ M(r)
n1×n2

. (3)

If Z(R), Z(C) i.i.d.∼ N(0, τ2) , minimizing the loss function

in eq. (2) is equivalent to maximizing the log-likelihood of

the data, giving a statistical motivation for the above score.

Problem (3) is non-convex due to the non-convex rank con-

straint rank(X) ≤ r.

Our problem is a specialization of the general affine matrix

recovery problem (Recht et al., 2010), in which a matrix is

measured through a general affine transformation A, with

b = A(X)+z. We consider next and throughout the paper

two specific random ensembles of measurement matrices

A(R), A(C):

1. Row and Column Matrix Completion (RCMC): In

this ensemble each row of A(R)and each column of

A(C) is a vector of the standard basis ej for some

j - thus each measurement B
(R)
ij or B

(C)
ij is obtained

from a single entry of X . We define a row-inclusion

probability p(R)and column inclusion probability p(C)

such that each row (column) of the matrix X will

be measured with probability p(R)(p(C)). More pre-

cisely, we define r1, .., rn1
i.i.d. Bernoulli variables,

P (ri = 1) = p(R), and include ei as a row in A(R)

if and only if ri = 1. Similarly, we define c1...cn2

i.i.d. Bernoulli variables, P (ci = 1) = p(C), and in-

clude ei as a column in A(C) if and only if ci = 1.

The expected number of observed rows (columns) is

k(R) = n1p
(R)(k(C) = n2p

(C)). The model is very

close to the possibly more natural model of picking

k(R) distinct rows and k(C) distinct columns at ran-

dom for fixed k(R), k(C), but allows for easier analy-

sis.

2. Gaussian Rows and Columns (GRC): In this ensem-

ble A(R), A(C) i.i.d.∼ N(0, 1). Each observation B
(R)
ij

or B
(C)
ij is obtained by a weighted sum of a single row

or column of X , with i.i.d. Gaussian weights.

2.1. Comparison to Standard Designs

The rows-and-columns design presented above is distinct

from standard measurements ensembles proposed and stud-

ied in the literature. It is instructive to compare the

GRC ensemble to the Gaussian Ensemble (GE) model

(Candès & Plan, 2011), where using the matrix represen-

tation A(X) = Avec(X) with A ∈ Rd×n1n2
, we take

A
i.i.d.∼ N(0, 1). For the latter, the following r-Restricted

Isometry Property (RIP) can be used:

Definition 1. (r-RIP) Let A : Rn1×n2 → R
d be a linear

map. For every integer r with 1 ≤ r ≤ min(n1, n2), de-

fine the r-Restricted Isometry Constant to be the smallest

number ǫr such that

(1− ǫr)||X||F ≤ ||A(X)||F ≤ (1 + ǫr)||X||F (4)

holds for all matrices X of rank at most r.

The GE model satisfies the r-Restricted Isometry Property

(RIP) for d = O(rn) with high probability (Recht et al.,

2010). Based on this property it is known that nuclear

norm minimization (Recht et al., 2010; Candès & Plan,

2011) and other algorithms such as singular value projec-

tion (Jain et al., 2010) can recover X with high probability.

Unlike GE, in our GRC model the operator A(X) doesn’t

satisfy the RIP, and nuclear norm minimization fails. In-

stead, A(R), A(C) preserve matrix Frobenius norm in high

probability, which is a weaker property than the RIP which

holds for any low-rank matrix. (see lemma 7 in Appendix).

We next compare the RCMC model to the standard Matrix

Completion model (Candès & Recht, 2009), in which sin-

gle entries are chosen at random to be observed. Unlike

GE, for MC incoherence conditions on X are required in

order to recover X (Candès & Recht, 2009) :

Definition 2. (Incoherence). Let U be a subspace of Rn

of dimension r, and PU be the orthogonal projection on U .
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Then the coherence of U (with respect to the standard basis

{ei}) is defined as

µ(U)≡n

r
maxi||PU (ei)||2. (5)

We say that a matrix X ∈ Rn1×n2
is µ-incoherent if for the

SV D X = UΣV T we have max(µ(U), µ(V )) ≤ µ.

When X is incoherent, and when known entries are sam-

pled uniformly at random from X , several algorithms (Ke-

shavan et al., 2009; Cai et al., 2010; Jain et al., 2010) suc-

ceed to recover X with high probability. In particular, nu-

clear norm minimization has gained popularity as a solver

for the standard MC problem due to it’s recovery guaran-

tees, and a convenient representation as a convex optimiza-

tion problem with availability of many iterative algorithms

for the problem. However, nuclear norm minimization fails

for the RCMC design, even when the matrix X is incoher-

ent, as shown by the next example:

Example: Take X ∈ Rn×n for n
3 ∈ N with Xij =

1∀(i, j) ∈ [n]×[n]. Thus ||X||∗ = n. Take k(R) = k(C) =
n
3 . One can set all unknown entries to 0.5, giving a matrix

X0 of rank 2 with σ1(X0) =
(
√
2+1)n
3 ,σ2(X0) =

(
√
2−1)n
3 ,

therefore ||X0||∗ = n
√
2

3 < ||X||∗ and nuclear norm min-

imization fails to recover the correct X . In Section 3

we present our SVLS algorithm, which does not rely on

nuclear-norm minimization.

3. Algorithms for Recovery of X

In this section we give an efficient algorithm which we call

SVLS (Singular Value Least Squares), SVLS very easy to

implement, first we give algorithm 1 for the noiseless case

and than we expend our algorithm to the general case.

3.1. Noiseless Case

In the noiseless case we reduce the optimization problem

3 to solving a system of linear equations, and provide

a closed-form estimator. We then give conditions under

which with high probability, the solution is unique and is

equal to the true matrix X . If rank(A(R)Û) = r one can

write the resulting estimator X̂ in closed-form as follows:

X̂ = ÛY = Û [ÛTA(R)TA(R)Û ]−1ÛTA(R)TB(R) (6)

Algorithm 1 doesn’t treat the row and column measure-

ments symmetrically. We can apply the same algorithm,

but changing the role of rows and columns. The resulting

closed form solution is then:

X̂ = B(C)A(C)(V̂ TA(C)A(C)T V̂ )−1V̂ T (7)

for an orthogonal matrix V̂ representing a basis for the rows

of X . Since the algorithm uses matrix inversion/Gaussian

Algorithm 1

Input A(R), A(C), B(R), B(C) and rank r

1. Compute a basis (of size r) to the row space of

B(C) using Gaussian elimination, represented as the

columns of a matrix Û ∈ Rn1×r.

2. Solve the linear system B
(R)
•j = A(R)ÛY•j for each

j = 1, .., n2 and write the solutions as a matrix Y =
Y•1...Y•n2

.

3. Output X̂ = ÛY

elimination steps, it is crucial that we have exact noiseless

measurements. Next, we modify the algorithm to work also

for noisy measurements.

3.2. General (Noisy) Case

In the noisy case we seek a matrix X minimizing the loss

F in eq. (2). The minimization problem is non-convex

and there is no known algorithm with optimality guaran-

tees. We propose the following algorithm which empiri-

cally returns a matrix estimator X̂ with a low value of the

loss F :

Algorithm 2 SVLS

Input A(R), A(C), B(R), B(C) and rank r

1. compute B(C) = Û Σ̂V̂ T , the SV D of B(C), (Û is a

basis for the columns space of B(C))

2. Find the least-squares solution Ŷ = argminY ‖
B(R) − A(R)ÛY ||F . If rank(A(R)Û) = r we can

write Ŷ in closed form as before:

Ŷ = [ÛTA(R)TA(R)Û ]−1ÛTA(R)TB(R) (8)

3. Return the estimate X̂(R) = Û Ŷ .

4. Repeat 1-3 with replacing roles of the columns and the

rows and get matrix X̂(C)

5. Set X̂ = argminX̂(R),X̂(C)F(X)

3.2.1. GRADIENT DESCENT

SVLS returns an estimator X̂ of X , which may not min-

imize the loss function in eq. (2). We therefore perform

an additional gradient descent stage starting from X̂ to

achieve an estimator with lower loss (while still a local

minima due to the non-convexity of the problem). SVLS

can be thus viewed as a fast method for providing a desir-



440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

Submission and Formatting Instructions for ICML 2015

able starting point for local-search algorithms. The details

of the gradient descent are given in Appendix Section 7.2.

3.3. Estimation Of Unknown Rank

In real life problems, one doesn’t know the true rank of

a matrix and should estimate it from data. Our rows-

and-columns sampling design is particularly suitable for

rank estimation since rank(B(C,0)) = rank(B(R,0)) =
rank(X) with high probability when enough rows and

columns are sampled. In the noiseless case we can estimate

rank(X) by r̂=rank(B(C,0)).

For the noisy case we can estimate rank(X) from

B(C), B(R). We used the popular elbow method to esti-

mate rank(B(C)) in the following way

r̂(C) = argmaxi∈[k(C)−1]

(

σi(B
(C))

σi+1(B(C))

)

(9)

We compute similarly r̂(R) from B(R) and take the average

as our rank estimator, r̂ = round
(

r̂(C)+r̂(C)

2

)

.

Modern methods for rank estimation from singular values

(Gavish & Donoho, 2013) (Gavish & Donoho, 2014) can

be similarly applied to B(R), B(C) and averaged, and may

yield more accurate rank estimates.

4. Performance Guarantees

We show guarantees on the accuracy of the estimator X̂
returned by SVLS. Our guarantees are probabilistic, with

respect to randomizing the design matrices A(R), A(C). For

the noiseless case we give conditions which are close to

optimal for exact recovery.

4.1. Noiseless Case

A rank r matrix of size n1×n2 has r(n1+n2− r) degrees

of freedom, and can therefore not be recovered by fewer

measurements. Setting k(R) = k(C) = r gives precisely

this minimal number of measurements. We next show that

this number suffices, with probability 1, to guarantee accu-

rate recovery of X in the GRC model. In the RCMC model

we need an additional incoherence assumption on X and a

larger number of measurements in order to guarantee accu-

rate recovery with high probability.

Lemma 1. Let X1, X2 ∈ M(r)
n1×n2

and A(R) ∈
Rk(R)×n1

, A(C) ∈ Rn2×k(C) such that rank(A(R)X1) =

rank(X1A
(C)) = r. If A(R)X1 = A(R)X2 and

X1A
(C) = X2A

(C) then X1 = X2.

Proof. First, rank(X2A
(C)) = rank(X1A

(C)) = r
and rank(A(R)X2) = rank(A(R)X1) = r.
Since span(X1A

(C)), span(X2A
(C)) are sub-

spaces of span(X1), span(X2) respectively, and

dim(span(X2)) = r we get span(X2) =
span(X2A

(C)) = span(X1A
(C)) = span(X1), and

we define U ∈ On1×r a basis for this subspace.

For X1, X2 there are Y1, Y2 ∈ Rr×n2 such that X1 =
UY1, X2 = UY2. Hence A(R)UY1 = A(R)UY2.

Since rank(A(R)UY1) = r and U ∈ On1×r we get

rank(A(R)U) = r, hence the matrix UTA(R)TA(R)U is

invertible, Y1 = Y2, and X1 = UY1 = UY2 = X2.

Lemma 2. Let X ∈ M(r)
n1×n2

such that X =

UΣV T , and A(R) ∈ Rk(R)×n1
, A(C) ∈ Rn2×k(C)

such that rank(A(R)X) = rank(XA(C)) = r. If

A(R), A(C), B(R,0), B(C,0) and r is the input of SVLS then

the output X̂ satisfies

A(R)X = A(R)X̂, XA(C) = X̂A(C) (10)

Proof. span(XA(C)) ⊆ span(X) and rank(XA(C)) =
rank(XA(C)) = r , hence span(XA(C)) = span(X)
and Û from stage 1 in SVLS is a basis for span(X).
We can write X = ÛL for some matrix L ∈ Rr×n2

,

Since rank(A(R)ÛL) = rank(Û) = r , we have

rank(A(R)Û) = r. Thus eq. (8) gives X̂ in closed form

and we get:

A(R)X̂ = A(R)Û [ÛTA(R)TA(R)Û ]−1ÛTA(R)TB(R,0) =

A(R)Û [ÛTA(R)TA(R)Û ]−1ÛTA(R)TA(R)ÛL =

A(R)ÛL = A(R)X (11)

X̂A(C) = Û [ÛTA(R)TA(R)Û ]−1ÛTA(R)TA(R)XA(C) =

Û [ÛTA(R)TA(R)Û ]−1ÛTA(R)TA(R)ÛLA(C) =

ÛLA(C) = XA(C) (12)

4.1.1. EXACT RECOVERY FOR GRC

For the GRC model, the above lemma can be used to prove

exact recovery of X with the minimal possible number of

measurements:

Lemma 3. Let V ∈ On×r and A(C) ∈ Rn×k be a random

matrix A(C) i.i.d.∼ N(0, σ2). Then V TA(C) ∈ Rr×k
i.i.d.∼

N(0, σ2).

The proof of this lemma is in the appendix (7.1).

Theorem 1. Let X̂ be the output of Algorithm SVLS in

the GRC model with Z(C) and Z(R) equal to zero and

k(R), k(C) ≥ r. Then P (X̂ = X) = 1.

Proof. Let UΣV T be the SV D of X , from lemma 3

and since the measure of low rank matrices is zero and

k(C) ≥ r we get that rank(V TAC) = r, hence if B(C) =
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UΣV TA(C) rank(B(C)) = rank(UΣV TA(C)) = r, In

the same way rank(B(R)) = r. hence combining lemma

2 with lemma 1 give us the require result

4.1.2. EXACT RECOVERY FOR RCMC

Unlike in the GRC model we can’t promise uniqueness

of solution in the RCMC model. We wish to find func-

tion such that for any incoherence measure we can find the

probability for reconstruct X . We assume the Bernoulli

rows and columns model as described in Section 2 and as-

sume for simplicity that p(R) = p(C) = p (and k(R) =
k(C) = k). We prove that if U ∈ On×r is orthonormal then

with high probability p−1||UTA(R)TA(R)U − pIr||2 < 1.

Because U is orthonormal, this is equivalent to

p−1||UUTA(R)TA(R)UUT − pUUT ||2 < 1 ⇔
p−1||PUPA(R)T PU − pPU ||2 < 1 (13)

where PU = UUT , P
A(R)T = A(R)TA(R). We generalize

Theorem 4.1 from (Candès & Recht, 2009).

Lemma 4. Suppose A(R) as in the rows and columns

model with probability p, and U ∈ On×r with µ(U) =
n
r
maxi||PU (ei)||2 = µ. Then there is a numerical con-

stant CR such that for all β > 1 , if CR

√

βlog(n)rµ
pn

< 1

then:

P

(

p−1||PUPA(R)T PU − pPU ||2 < CR

√

βlog(n)rµ

pn

)

> 1− 3n−β (14)

The proof of lemma 4 is built upon (yet generalizes) the

proof of Theorem 4.1 from (Candès & Recht, 2009) and is

given in Appendix (7.3).

Theorem 2. Let X = UΣV T be the SV D of X ∈ Rn×n,

and max(µ(U), µ(V )) < µ. Take A(R) and A(C) as in

the RCMC model without noise and probability p = k
n

. Let

β > 1 such that CR

√

βlog(n)rµ
k

< 1 where CR as in lemma

4 and let X̂ is the output of SVLS,. Then P
(

X̂ = X
)

>

1− 6n−β provided that CR

√

βlog(n)rµ
k

< 1.

Proof. From lemma 4 we have that with probability > 1−
6n−β , p−1||pIr −UTA(R)TA(R)U ||2 < 1 and p−1||pIr −
V TA(C)A(C)T V ||2 < 1. Since the singular values of pIr−
UTA(R)TA(R)U are |p − σi(U

TA(R)TA(R)U)| for 1 ≤
i ≤ r, we have that

p−σr(U
TA(R)TA(R)U) ≤ σ1(pIr−UTA(R)TA(R)U) < p

⇒ 0 < σr(U
TA(R)TA(R)U) (15)

and similarly for V TA(C)A(C)T V . Therefore

rank(A(R)U) = rank(V TA(C)) = r and

rank(A(R)X) = rank(XA(C)) = r with

probability > 1 − 6n−β , hence from lemma 2

A(R)X = A(R)X̂ XA(C) = X̂A(C) and from lemma (1)

X = X̂ .

Remark 1. The combination of row and column measure-

ments is crucial in order to guarantee recovery. If, for ex-

ample we observe only rows then even with n− 1observed

rows and rank r = 1 we can only determine the unobserved

row up to a constant, and thus cannot recover X uniquely.

4.2. General (Noisy) Case

In the noisy case we can’t ensure to recover the exact X . In-

stead, we bound the reconstruction error ||X− X̂||F where

X̂ is the output of Algorithm (2).Here, we give bounds

on the error for the GRC model and similar models un-

der some conditions. For simplicity, we show the result for

k(R) = k(C) = k.

We focus on the high dimensional case k ≤ n, where num-

ber of measurements is low. In this case our bound is simi-

lar to the bound of the Gaussian Ensemble (GE). In (Candès

& Plan, 2011) Candes and Plan proved that with high prob-

ability ||X − X̂||F < CG

√

nrτ2

d
for some constant CG for

GE. We next prove an analogous result for our GRC model.

Theorem 3. Let A(R) and A(C) with k ≥ max(4r, 40) be

as in the GRC model with noise matrices Z(R), Z(C). Let

X̂ be the output of SVLS. Then with probability > 1−5eck:

||X−X̂||F ≤ c(C)

√

r

k
||Z(C)||2+c(R)

√

r

k
||Z(R)||2 (16)

where c(R), c(C), c are absolute constants.

Theorem 3 applies for any Z(C) and Z(R). If k ≤ n

and Z(R), Z(C) i.i.d.∼ N(0, τ2), then from eq. (32) we

get max(||Z(R)||2, ||Z(C)||2) ≤ 4τ
√
n with probability

1 − e−2n. We therefore get the next Corollary for i.i.d.

Gaussian noise:

Corrolary 1. Let A(R), A(C) as in the GRC with n ≥ k ≥
max(4r, 40), model and Z(R), Z(C) i.i.d.∼ N(0, τ2). Then

with probability > 1− 5e−ck − e−2n:

||X − X̂||F ≤ 4
(

c(R) + c(C)
)

√

τ2nr

k
(17)

5. Simulations Results

We studied the performance of our algorithm using simula-

tions. We measured the reconstruction accuracy using the
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Figure 1. Reconstruction rates for matrices with dimension n =
150 and r = 3 where d is the number of known entries varied

between 0 to 8000. SVT and optSpace are applied to the standard

MC design and Algorithm 1 to RCMC. For each d we sampled

50 matrices and calculated the reconstruction rate as discovered

in main text.

relative Root-Mean-Squared-Error (RMSE), defined as

RRMSE = RRMSE(X, X̂) = ||X − X̂||F /||X||F .
(18)

For simplicity, we concentrated on square matrices with

n1 = n2 = n and used an equal number of row and col-

umn measurements, k(R) = k(C) = k . In all simula-

tions we sampled a random rank-r matrix X = UV T with

U, V ∈ Rn×r , U, V
i.i.d.∼ N(0, σ2).

In all simulations we assumed that rank(X) is unknown

and estimated using the elbow method in eq. (9).

5.1. Row-Column Matrix Completion (RCMC)

In the noiseless case we compared our design to the stan-

dard matrix completion. We compared the reconstruction

rate (probability of exact reconstruction of X as function of

the number of measurements d) for the RCMC design with

Algorithm SVLS to the reconstruction rate for the standard

MC design with the optSpace(Keshavan et al., 2010) and

SVT(Cai et al., 2010) algorithms. To allow for numeri-

cal errors, for each simulation yielding X, X̂ we defined

recovery as successful if their RRMSE was lower than

10−3, and for each value of d recorded the percentage of

simulations for which recovery was successful . In Fig-

ure 5.1 we show results for n = 150, r = 3 and σ = 1.

SVLS reconstruct X with optimal number of measure-

ments d = r(2n−r) = 894 yielding d
n2 ≈ 0.04 with prob-

ability 1 while MC with optSpace and SVT need roughly 3-

fold and 8-fold more measurements, respectively, to guar-

antee exact recovery.

The improvement in accuracy is not due to our design or
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Figure 2. Box-plots represent the distribution of RRMSE as

a function of the number of column and row measurements k

over 50 different sampled matrices X = UV T with U, V
i.i.d.∼

N(0, 1) and Z(R), Z(C) i.i.d.∼ N(0, 0.252). OptSpace (red) fails

to recover X on many instances while SVLS (blue) performs very

well on all of them. SVT(green) fails to recover X for all in-

stances. The trimming of dense rows and columns in OptSpace

was skipped, since such trimming in our settings may delete all

measurement information for low k.

our algorithm alone, but due to their combination. We com-

pared our method to optSpace and SVT for RCMC. We

sampled a matrix X with n = 100 r = 3 and σ = 1 noise

level τ2 = 0.252 and varied the number of row and col-

umn measurements k Figure 5.1 shows that while SVLS is

very stable even for small k, the optSpace has a lot of out-

liers and SVT which minimize the nuclear norm achieves

poor accuracy. (Remark: The algorithm optSpace has a

trimming step which delete dense columns. We omitted

this step in the RCMC model since it would delete all the

known columns and rows and it’s not stable for this type of

measurements, but it still get better result than SVT.)

Next, we compared our RCMC to standard MC. We sam-

pled X as before with U, V ∈ R1000×r with standard

Gaussian distribution, different rank and different noise ra-

tio. The observations were corrupted by additive Gaussian

noise Z with relative noise NR ≡ ||Z||F /||X||F .

For small number of measurements our algorithm gives

better results than the standard MC, and is comparable to

MC whem the number of measurements is large. More-

over, our algorithm is significantly faster than the other two

algorithms in Table 1.

5.2. Gaussian Rows and Columns (GRC)

We tested the performance of the GRC model with

A(R), A(C) i.i.d.∼ N(0, 1
n
) (for getting independence with

n) and with X = UV T where every entry in U, V has

N(0, 1√
r
) entry, we compere our results to the Gaussian
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Table 1. RRMSE and time in seconds (in parenthesis) for SVLS

applied to RCMC, and optSpace and SVT applied to the standard

MC. Results represent average of 5 different random matrices.

SVLS is faster than optSpace and SVT by 1 to 3 orders of mag-

nitudes, and shows comparable or better RRMSE in all cases.

NR d r SVLS optSpace SVT

10−2 120156 10 0.063(0.15) 0.005(20.8) 0.0096(18.7)

10−1 120156 10 0.064(0.15) 0.04(21.7) 0.056(11)
1 120156 10 0.64(0.16) 0.49(24.5) 0.52(1)

10−2 59100 20 0.029(0.12) 0.97(25.6) 0.76(4.4)

10−1 59100 20 0.3(0.12) 0.98(40.1) 0.86(6.5)

10−1 391600 50 0.081(0.7) 0.05(1200) 0.069(13)
1 391600 50 0.72(0.6) 0.61(1300) 0.59(5)
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Figure 3. Relative error RRMSE as function of d number of

measurements ,where we take X ∈ M(2)
100×100, d is varied from

400 to 4000 and for different noise levels: τ = 0.1, 0.01 and

0.001. For every point we simulated 5 random matrices and com-

puted the average relative error.

ensemble model (GE) for getting same scale of measure-

ments we normalize A(X) with n. In Figure 3 we take

n = 100 and r = 2 and change d = 2nk the number of

measurements , (where A(R) ∈ Rk×n and A(C) ∈ Rn×k),

in addition we added Gaussian noise Z(R) and Z(C) with

different level of noise τ . Even for small k our method

give good results. The error decays at a rate of
√
k for the

GE model we use algorithm APGL (Toh & Yun, 2010) for

nuclear norm minimization.

In the next tests we ran SVLS on different noise levels. We

take n = 1000 and k = 100 with different rank level every

entry in Z(C), Z(R) i.i.d.∼ N(0, τ2) and different values of

τ . Results are shown in Figure 4. The change in the relative

error RRMSE is linear in τ while the rate depends on r.

We next examined the behaviour of the RRMSE when

n → ∞ and when n, k, r → ∞ together. Results (shown

in Appendix Section 7.5) show that when properly scaled,

the RRMSE error is not sensitive to the value of n and

other parameters, in agreement with Theorem 3.
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Figure 4. For X ∈ R1000×1000 of different ranks , we plot

the RRMSE as a function of τ varied from 0 to 0.1. For

each curve we fitted a linear regression line, with fitted slopes

0.145, 0.208, 0.25, 0.3 for r = 2, 4, 6, 8, respectively. The slope

is roughly proportional to
√
r in concordance with the error bound

in Theorem 3 but further investigation of the relation using exten-

sive simulations is required in order to evaluate the dependency

of the recovery error in r in a more precise manner.

6. Discussion

We introduced a new measurements ensemble for low rank

matrix recovery where every measurements is an affine

combination of a row or column of X . We focused on two

models: matrix completion from single columns and rows

(RCMC) and matrix recovery from Gaussian combination

of columns and rows (GRC). We proposed a fast algorithm

for this ensemble. For the RCMC model we proved that in

the noiseless case our method recovers X with high prob-

ability and Simulation results show that the RCMC model

outperform the standard approach for matrix completion in

both speed and accuracy for models with small noise.

For the GRC model we proves that our method return X
with optimal number of measurements in the noiseless case

and gave am upper bounds on the error for the noisy case.

For RCMC, our simulations show that the RCMC design

may achieve comparable or favorable results, compared to

the standard MC design, especially for low noise level.

Proving recovery guarantees for this RCMC model is an

interesting challenge.

Our proposed measurement schemes is not restricted to re-

covery of low-rank matrices. One can employ this mea-

surement scheme and recover X by minimizing other ma-

trix norms. This direction can lead to new algorithms that

may improve matrix recovery for real datasets.
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