A phase transition for the probability of being a maximum among random vectors with general iid coordinates

Royi Jacobovic* and Or Zuk
Dept. of Statistics and Data Science, the Hebrew University of Jerusalem

December 31, 2021

Abstract

Consider n iid real-valued random vectors of size k having iid coordinates with a general distribution function F. A vector is a maximum if and only if there is no other vector in the sample which weakly dominates it in all coordinates. Let $p_{k, n}$ be the probability that the first vector is a maximum. The main result of the present paper is that if $k \equiv k_{n}$ is growing at a slower (faster) rate than a certain factor of $\log (n)$, then $p_{k, n} \rightarrow 0$ (resp. $p_{k, n} \rightarrow 1$) as $n \rightarrow \infty$. Furthermore, the factor is fully characterized as a functional of F. We also study the effect of F on $p_{k, n}$, showing that while $p_{k, n}$ may be highly affected by the choice of F, the phase transition is the same for all distribution functions up to a constant factor.

1 Introduction

Consider a model with a sample of n iid random vectors of size k. It is assumed that the coordinates are iid real-valued random variables having a general distribution function F. A vector is said to be a (strong) maximum if and only if (iff) there is no other vector in the sample which (weakly) dominates it in all coordinates. Let $p_{k, n}$ be the probability that the first vector is a maximum. Once k (resp. n) is fixed, then $p_{k, n} \rightarrow 0$ (resp. $p_{k, n} \rightarrow 1$) as $n \rightarrow \infty$ (resp. $k \rightarrow \infty$). The main contribution of the present work is a generalization of this straightforward observation by allowing k to be determined as a function of n. Namely, we will show that if $k \equiv k_{n}$ is grows at a slower (resp. faster) rate than $\gamma \log (n)$, then $p_{k, n} \rightarrow 0$ (resp. $p_{k, n} \rightarrow 1$) as $n \rightarrow \infty$, where $\gamma \in(0,1]$ is a certain constant that depends on the distribution F. The derivation of this result uses extreme value theory, and in particular relies on a result from of Ferguson [1] about the asymptotic behaviour of a maximum of iid sequence of geometric random variables.

The asymptotic behaviour of $p_{k, n}$ has an important role in many applications. For example, in analysis of linear programming 2 and of maxima-finding algorithms $3 \sqrt{7}$. Furthermore, it is also related to game theory [8] and analysis of random forest algorithms 9, 10]. This literature focuses mainly on asymptotic results once F is a continuous function, k is fixed and n tends to infinity $8,11-16$. Both 8 and 14 contain an approximation of the expected number of maxima. In addition, an approximation of the variance of the number of maxima is given in [11] and asymptotic normality of this number was proved in 12 .

To the best of our knowledge, the only paper that includes asymptotic results as $n \rightarrow \infty$ and k is determined as a function of n is 16]. In the last equation of Section 1.1 of 16] there is a first order

[^0]approximation of $p_{k, n}$. This approximation holds uniformly for all possible forms of variations of k as a function of n which tends to infinity. In particular, it yields existence of a non-trivial phase-transition at $k \approx \log (n)$ which is consistent with our findings. While 16 refers only to a continuous F, the current results hold for a general F.

The rest is organized as follows: Section 2 contains a precise description of the model with a statement of the main result. In particular, the functional γ of F that determines the localization of the phase transition is presented (with the proof deferred to Section 4). Section 3 is devoted to exploring the effect of the distribution F on the probability $p_{k, n}$, with two important special cases: Section 3.1 is about the continuous case and includes a detailed discussion of the relation between the current results and the approximation which appears in 16 . Section 3.2 is about a simple example in which the coordinates have a Bernoulli distribution. This example illustrates two things:

1. While $p_{k, n}$ is the same for every continuous F, it might have a different asymptotic behaviour for fixed k as $n \rightarrow \infty$, once the continuity assumption is relaxed. Given these differences, it is a bit surprising that the phase-transition for $p_{k, n}$ is the same for all distribution functions up to the factor γ.
2. Even for a special case in which there is a simple exact combinatorial formula for $p_{k, n}$, it is unclear how to utilize this formula in order to derive the main result directly.

2 Model description and the main result

In the sequel, for every set A and a potential element a, denote the corresponding indicator function

$$
\mathbf{1}_{A}(a) \equiv \begin{cases}1, & a \in A \tag{1}\\ 0, & a \notin A\end{cases}
$$

In addition, in several places of this manuscript we denote the minimum (resp. maximum) of some real numbers $x_{1}, x_{2}, \ldots, x_{n}$ by $\wedge_{i} x_{i} \equiv \min _{i} x_{i}$ (resp. $\vee_{i} x_{i} \equiv \max _{i} x_{i}$).

2.1 Multivariate maximum

The following is a common definition of a maximum of a set of vectors in \mathbb{R}^{k}. It is based on the product order \preceq on \mathbb{R}^{k}, i.e., for every two vectors $a, b \in \mathbb{R}^{k}$ such that $a=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ define

$$
\begin{equation*}
a \preceq b \Leftrightarrow\left(a_{i} \leq b_{i}, \forall 1 \leq i \leq k\right) . \tag{2}
\end{equation*}
$$

Similarly, define

$$
\begin{equation*}
a \prec b \Leftrightarrow\left(a \preceq b \text { and } \exists i \in[k] \text { s.t. } a_{i}<b_{i}\right) . \tag{3}
\end{equation*}
$$

Definition 1 Let $x_{1}, x_{2}, \ldots, x_{n}$ be n vectors in \mathbb{R}^{k}. In addition, let \preceq be the product order on \mathbb{R}^{k}. Then, for each $1 \leq i \leq n, x_{i}$ is a maximum with respect to $x_{1}, x_{2}, \ldots, x_{n}$ iff there is no $j \neq i$ such that $x_{i} \preceq x_{j}$. In addition, the set of maxima with respect to $x_{1}, x_{2}, \ldots, x_{n}$ is called the Pareto-front generated by $x_{1}, x_{2}, \ldots, x_{n}$.
Remark 1 Definition 1 refers to a strong maximum. To see this, consider the special case in which $k=1$ and $x_{1}=x_{2}=\ldots=x_{n}$. In this case, $x_{1}, x_{2}, \ldots, x_{n}$ are all maxima in the usual sense but none of them is a maximum in the sense of Definition 1 While this example illustrates a situation in which there is no maximum in the sense of Definition 1. it is possible to have multiple maxima in that sense. For instance assume that $n=k=2$ and consider the case in which $x_{1}=(1,0)$ and $x_{2}=(0,1)$.

Remark 2 It is natural to introduce another notion of multivariate maximum: x_{i} is a weak maximum with respect to $x_{1}, x_{2}, \ldots, x_{n}$ iff there is no $j \neq i$ such that $x_{i} \prec x_{j}$. Correspondingly, the set of weak maxima with respect to $x_{1}, x_{2}, \ldots, x_{n}$ is called the weak Pareto-front generated by $x_{1}, x_{2}, \ldots, x_{n}$. Later, in Section 3.2 we discuss this notion once the coordinates have a Bernoulli distribution.

2.2 Problem description

Let $\left\{X_{i j} ; i, j \geq 1\right\}$ be an infinite array of iid real-valued random variables having a distribution function F. For every $i, k \geq 1$ denote $X_{i}^{k} \equiv\left(X_{i 1}, \ldots, X_{i k}\right)$ and for every $k, n \geq 1$, let $\mathcal{P}_{k, n}$ be the (random) set of all indices of vectors which belong to the Pareto-front generated by $X_{1}^{k}, X_{2}^{k}, \ldots, X_{n}^{k}$. An initial observation is that:

1. For every fixed $k \geq 1, \mathbf{1}_{\mathcal{P}_{k, n}}(1) \xrightarrow{n \rightarrow \infty} 0, P$-a.s.
2. For every fixed $n \geq 1, \mathbf{1}_{\mathcal{P}_{k, n}}(1) \xrightarrow{k \rightarrow \infty} 1, P$-a.s.

The main question is how to generalize this observation by characterizing the asymptotic behaviour of $\mathbf{1}_{\left\{\mathcal{P}_{k_{n}, n}\right\}}(1)$ as $n \rightarrow \infty$ for a general sequence $\left(k_{n}\right)_{n=1}^{\infty}$?

2.3 Main result

Let X be a random variable with cumulative distribution function F. Define the function $S: \mathbb{R} \rightarrow[0,1]$ as $S(x) \equiv P(X \geq x)$. When F is continuous, S is the corresponding survival function. Next, define

$$
\begin{equation*}
\gamma \equiv \gamma_{F} \equiv-E \log [S(X)] \tag{4}
\end{equation*}
$$

and the following theorem is the main result. Its proof is given in Section 4
Theorem 1 Let k_{1}, k_{2}, \ldots be a sequence of positive integers
(a) If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{k_{n}}{\log (n)}>\gamma^{-1} \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\boldsymbol{1}_{\mathcal{P}_{k_{n}, n}}(1) \xrightarrow{n \rightarrow \infty} 1 \quad, \quad P \text {-a.s. } \tag{6}
\end{equation*}
$$

(b) If

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{k_{n}}{\log (n)}<\gamma^{-1} \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\boldsymbol{1}_{\mathcal{P}_{k_{n}, n}}(1) \xrightarrow{n \rightarrow \infty} 0 \quad, \quad P \text {-a.s. } \tag{8}
\end{equation*}
$$

For every $k, n \geq 1$, denote

$$
\begin{equation*}
p_{k, n} \equiv P\left(1 \in \mathcal{P}_{k, n}\right)=E \mathbf{1}_{\mathcal{P}_{k, n}}(1) \tag{9}
\end{equation*}
$$

Then, an application of bounded convergence theorem yields the following corollary.
Corollary 1 Let k_{1}, k_{2}, \ldots be a sequence of positive integers.
(a')

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{k_{n}}{\log (n)}>\gamma^{-1} \Rightarrow \lim _{n \rightarrow \infty} p_{k_{n}, n}=1 \tag{10}
\end{equation*}
$$

(b')

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{k_{n}}{\log (n)}<\gamma^{-1} \Rightarrow \lim _{n \rightarrow \infty} p_{k_{n}, n}=0 \tag{11}
\end{equation*}
$$

2.4 The factor γ

Define

$$
\begin{equation*}
S^{-1}(y) \equiv \inf \{x \in \mathbb{R} ; S(x) \leq y\} \quad, \quad y \in(0,1) \tag{12}
\end{equation*}
$$

Since S is a nonincreasing leftcontinuous function, $S\left[S^{-1}(y)\right] \leq y$ for every $y \in(0,1)$. By definition, $-\log [S(X)] \geq 0$ and hence is well-defined and nonnegative. Furthermore, the usual formula for an expectation of a nonnegative random variable yields that

$$
\begin{align*}
\gamma & =\int_{0}^{\infty} P[-\log [S(X)]>t] d t \tag{13}\\
& =\int_{0}^{\infty} P\left[S(X)<e^{-t}\right] d t \\
& =\int_{0}^{\infty} P\left[X>S^{-1}\left(e^{-t}\right)\right] d t \\
& =\int_{0}^{\infty} S\left[S^{-1}\left(e^{-t}\right)\right] d t \\
& \leq \int_{0}^{\infty} e^{-t} d t=1 .
\end{align*}
$$

When F is continuous, the last inequality above holds with equality which yields that $\gamma=1$. Moreover, $\gamma=0$ if and only if $S \equiv 1$, which means that X is infinite. Thus, the assumption that X is real-valued implies that $\gamma \in(0,1]$. For example, when the coordinates have a $\operatorname{Bernoulli}(p)$ distribution for some $p \in(0,1)$,

$$
S(x)= \begin{cases}1, & x \leq 0 \tag{14}\\ p, & 0<x \leq 1 \\ 0, & 1<x\end{cases}
$$

Therefore,

$$
\begin{equation*}
\gamma=-p \log (S(1))-(1-p) \log (S(0))=-p \log (p) \tag{15}
\end{equation*}
$$

and hence $\gamma=e^{-1} \approx 0.368$ is the maximal value of γ for the Bernoulli case, obtained at $p=e^{-1}$.

3 The effect of the distribution F

In this section we study the effect of the distribution F of the individual variables $X_{i j}$, on the distribution of the number of maxima. We specify the dependence on F explicitly, denoting $\mathcal{P}_{k, n}^{(F)}$ the (random) maximal set and $p_{k, n}^{(F)}$ the probability of being a maxima when $X_{i j} \sim F$. Similarly, we denote by $\mathcal{Q}_{k, n}^{(F)}$ the weak Pareto-front generated by $X_{1}^{k}, . ., X_{n}^{k}$ (see Remark 22), and define

$$
\begin{equation*}
q_{k, n}^{(F)} \equiv P\left(1 \in \mathcal{Q}_{k, n}^{(F)}\right)=E 1_{\mathcal{Q}_{k, n}^{(F)}}(1) \tag{16}
\end{equation*}
$$

By definition $X_{j}^{k} \succ X_{i}^{k} \Rightarrow X_{j}^{k} \succcurlyeq X_{i}^{k}$, hence $\mathcal{P}_{k, n}^{(F)} \subseteq \mathcal{Q}_{k, n}^{(F)}$ and $p_{k, n}^{(F)} \leq q_{k, n}^{(F)}$. In particular, when F is continuous, $\mathcal{P}_{k, n}^{(F)}=\mathcal{Q}_{k, n}^{(F)}, P$-a.s., hence $p_{k, n}^{(F)}=q_{k, n}^{(F)}$. In addition, $p_{k, n}^{(F)}$ is invariant to F as long as F is continuous, hence $p_{k, n} \equiv p_{k, n}^{(F)}=q_{k, n}^{(F)}$ without the specification of F will refer to a general continuous distribution.

Proposition 1 below shows that the continuous and the Bernoulli distributions are extreme cases, in the sense that for every distribution F, the probability of being a (strong) maxima lies between them. To shorten notation, for every $p \in(0,1)$, let $p_{k, n}^{(p)}$ be the probability of being a maximum once the coordinates have a $\operatorname{Bernoulli}(p)$ distribution.

Proposition 1 Let $p_{k, n}^{(F)}$ be defined as above for a general F. Then,

1. $p_{k, n}^{(F)} \leq p_{k, n}$.
2. $p_{k, n}^{(p)} \leq p_{k, n}^{(F)}$ for every $p \in\{1-F(x) ; x \in \mathbb{R}\}$.

Proof:

1. Let F be an arbitrary probability distribution and let U be the distribution function of random variable which is uniformly distributed on $[0,1]$. The random variables $X_{i j} \sim F$ can be realized by taking uniform random variables $U_{i j} \sim U$, and then taking the transformation $X_{i j}=F^{-1}\left(U_{i j}\right)$, where F^{-1} is the pseudo-inverse of F. Thus, since F^{-1} is nondecreasing we have $U_{j}^{k} \succcurlyeq U_{i}^{k} \Rightarrow X_{j}^{k} \succcurlyeq$ X_{i}^{k} and hence $X_{i}^{k} \in \mathcal{P}_{k, n}^{(F)} \Rightarrow U_{i}^{k} \in \mathcal{P}_{k, n}^{(U)}$. Therefore, $\mathcal{P}_{k, n}^{(F)} \subseteq \mathcal{P}_{k, n}^{(U)}$ and hence $p_{k, n}^{(F)} \leq p_{k, n}$.
2. Take x with $p \equiv 1-F(x)$ and define $B_{i j}=\mathbf{1}_{\left\{X_{i j}>x\right\}}$. Since $B_{i j}$ is defined as a nondecreasing transformation of $X_{i j}$, then $B_{i}^{j} \in \mathcal{P}_{k, n}^{(p)} \Rightarrow X_{i}^{j} \in \mathcal{P}_{k, n}^{(F)}$. As a result, $\mathcal{P}_{k, n}^{(p)} \subseteq \mathcal{P}_{k, n}^{(F)}$ and hence $p_{k, n}^{(p)} \leq p_{k, n}^{(F)}$.
Remark 3 While $p_{k, n}^{(F)} \leq p_{k, n}$ for any F (i.e. discretization may only reduce the probability of being a strong maximum), there is no general ordering that always holds between $q_{k, n}^{(F)}$ and $q_{k, n}$. This is demonstrated numerically for the Bernoulli distribution in Section 3.2 .

Since the values $p_{k, n}^{(F)}$ for every distribution F of the $X_{i j}$'s can be bounded by the values for the continuous and Bernoulli case, we compare these two cases to study the effect of quantization on the probability of a random vector being a maximum.

3.1 Continuous distribution

For every $k, n \geq 1$, there are well-known exact formulas for $p_{k, n}$ (see e.g. 12):
1.

$$
\begin{equation*}
p_{k, n}=\sum_{u=1}^{n}\binom{n-1}{u-1} \frac{(-1)^{u-1}}{u^{k}} \tag{17}
\end{equation*}
$$

2.

$$
p_{k, n}= \begin{cases}\frac{1}{n} \sum_{u=1}^{n} p_{k-1, u}, & k>1 \tag{18}\\ \frac{1}{n}, & k=1\end{cases}
$$

and hence, for every $k>1$ one has

$$
\begin{equation*}
p_{k, n}=\frac{1}{n} \sum_{u \in \mathcal{U}_{k, n}} \frac{1}{u_{1} u_{2} \ldots u_{k-1}} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{U}_{k, n} \equiv\left\{u=\left(u_{1}, \ldots, u_{k-1}\right) \in \mathbb{Z}^{k-1} ; 1 \leq u_{1} \leq u_{2} \leq \ldots \leq u_{k-1} \leq n\right\} \tag{20}
\end{equation*}
$$

Furthermore, it is well known (see, e.g., [14) that for every fixed k,

$$
\begin{equation*}
p_{k, n} \sim \frac{\log ^{k-1}(n)}{n(k-1)!} \text { as } n \rightarrow \infty . \tag{21}
\end{equation*}
$$

For a fixed k, other asymptotic results results regarding the size of the Pareto-front as $n \rightarrow \infty$ include some asymptotic formulas for the variance 11 and a corresponding central limit theorem 12 .

Hwang (16] applied analytic techniques (see, [17, [18]) to these identities in order to derive an approximation of $p_{k, n}$ as $n \rightarrow \infty$ and k is determined as a function of n. Specifically, denote the cumulative distribution function of a standard normal random variable by $\Phi(\cdot)$ and let $\Gamma(\cdot)$ be the Gamma function. Then, the first order approximation which appears in 16 is

$$
p_{k, n} \sim \begin{cases}\frac{\log ^{k-1}(n)}{n(k-1)!} \Gamma\left[1-\frac{k}{\log (n)}\right], & \log (n)-k \gg \sqrt{\log (n)}, \tag{22}\\ \Phi\left[\frac{k-\log (n)}{\sqrt{\log (n)}}\right], & |k-\log (n)|=o\left[\log ^{\frac{2}{3}}(n)\right], \\ 1, & \log (n)-k \ll \sqrt{\log (n)},\end{cases}
$$

and it holds uniformly for all variations of k as $n \rightarrow \infty$. Since $\gamma=1$ for every continuous F, it may be verified that 22 implies Corollary 1. However, since convergence in P does not imply convergence P a.s., it is not straightforward to deduce Theorem 1 from 22 . In fact, Hwang 16 put forth the question of whether exists a probabilistic explanation for the phase-transition at $k \approx \log (n)$? Observe that while Theorem 1 yields some probabilistic explanation for this phenomenon, it does not supply a probabilistic proof of 22 .

3.2 Bernoulli distribution

Let $X_{i j} \sim \operatorname{Bernoulli}(p)$ for some $p \in(0,1)$. Let $B_{1}=\sum_{j=1}^{k} X_{1 j} \sim \operatorname{Binom}(k, p)$ and without loss of generality assume that $X_{1 j}=1$ for every $1 \leq j \leq B_{1}$ and $X_{1 j}=0$ for every $B_{1}+1 \leq j \leq k$. By the law of total probability applied to B_{1},

$$
\begin{align*}
p_{k, n}^{(p)} & =\sum_{i=0}^{k}\binom{k}{i} p^{i}(1-p)^{k-i}\left[P\left(X_{1}^{k} \npreceq X_{2}^{k} \mid B_{1}=i\right)\right]^{n-1} \\
& =\sum_{i=0}^{k}\binom{k}{i} p^{i}(1-p)^{k-i}\left[1-P\left(\bigwedge_{j=1}^{i} X_{2 j}=1\right)\right]^{n-1} \\
& =\sum_{i=0}^{k}\binom{k}{i} p^{i}(1-p)^{k-i}\left(1-p^{i}\right)^{n-1} . \tag{23}
\end{align*}
$$

Taking (23), we easily obtain the asymptotic result for the binary case for fixed k and $n \rightarrow \infty$. Since $\left(1-p^{i}\right)^{n-1}=o\left[\left(1-p^{k}\right)^{n-1}\right]$ for all $i<k$ as $n \rightarrow \infty$ we get that all terms in the above sum are negligible for large n except for the last, giving the result

$$
\begin{equation*}
p_{k, n}^{(p)} \sim p^{k}\left(1-p^{k}\right)^{n-1} \text { as } n \rightarrow \infty \tag{24}
\end{equation*}
$$

A similar calculation to the one in gives the probability of a weak maximum,

$$
\begin{align*}
q_{k, n}^{(p)} & =\sum_{i=0}^{k}\binom{k}{i} p^{i}(1-p)^{k-i}\left[P\left(X_{1}^{k} \nprec X_{2}^{k} \mid B_{1}=i\right)\right]^{n-1} \\
& =\sum_{i=0}^{k}\binom{k}{i} p^{i}(1-p)^{k-i}\left[1-P\left(\wedge_{j=1}^{i} X_{2 j}=1\right) P\left(\underset{j=i+1}{\left.\left.\stackrel{k}{乌} X_{2 j}=1\right)\right]^{n-1}}\right.\right. \\
& =\sum_{i=0}^{k}\binom{k}{i} p^{i}(1-p)^{k-i}\left(1-p^{i}+p^{i}(1-p)^{k-i}\right)^{n-1} \tag{25}
\end{align*}
$$

and the asymptotic result $q_{k, n}^{(p)} \rightarrow p^{k}$ for fixed k as $n \rightarrow \infty$.
Remark 4 For any fixed k the decay of $p_{k, n}=q_{k, n}$ is sub-linear in n as $n \rightarrow \infty$ (see 21). In contrast, $p_{k, n}^{(p)}$ decays to zero exponentially fast, whereas $q_{k, n}^{(p)}$ converges to a positive constant. The result is intuitive because for any fixed k the number of possible vectors in the binary case is finite, and the vector $(1, \ldots, 1)$ (with k coordinates) appears at least once P-a.s. as $n \rightarrow \infty$. A strong maximum may exist only if this vector appears at most once, an event with an exponentially small probability in n. Any occurrence of this vector is a weak maximum, yielding a positive probability not depending on n, $P\left(X_{i}^{k}=(1, . ., 1)\right)=p^{k}$.
Remark 5 While 23 is an exact combinatorial formula for $p_{k, n}^{(p)}$, it is not straightforward to analyze the behaviour of this combinatorial formula as $n \rightarrow \infty$ when k is determined as a general function of n. Theorem 1 gives us the asymptotic result for $p_{k, n}$ as $k, n \rightarrow \infty$ without relying on the exact expression.

For a complete treatment of the case in which the coordinates have $\operatorname{Bernoulli}(p)$ distribution, we derive here a combinatorial formula for the variance. Let $B_{i j}=\sum_{r=1}^{k} X_{1 r}^{i}\left(1-X_{1 j}\right)^{1-i} X_{2 r}^{j}\left(1-X_{2 r}\right)^{1-j}$ for $i, j=0,1$. The quartet $\left(B_{00}, B_{01}, B_{10}, B_{11}\right)$ has a multinomial distribution:

$$
\begin{equation*}
\left(B_{00}, B_{01}, B_{10}, B_{11}\right) \sim \operatorname{Multinomial}\left(k,\left((1-p)^{2}, p(1-p), p(1-p), p^{2}\right)\right) \tag{26}
\end{equation*}
$$

Conditioning on their value yields a combinatorial formula for the probability that both X_{1} and X_{2} belong to the Pareto-front.

$$
\begin{aligned}
& E \mathbf{1}_{\left\{1,2 \in \mathcal{P}_{k_{n}, n}^{(p)}\right\}}=\sum_{\substack{a, b, c, d \geq 0 ; \\
a+b+c+d=k}}\binom{k}{a b c d}\left[P\left(X_{1}^{k}, X_{2}^{k} \npreceq X_{3}^{k} \mid B_{00}=a, B_{01}=b, B_{10}=c, B_{11}=d\right)\right]^{n-2} \mathbf{1}_{\{b, c>0\}}
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{\substack{a, d \geq 0 ; b, c \geq 1: \\
a+b+c+d=k}}\binom{k}{a b c d}\left[1-p^{d}\left(p^{b}+p^{c}-p^{b+c}\right)\right]^{n-2} . \tag{27}
\end{align*}
$$

and the variance is given by:

$$
\begin{equation*}
V_{k, n}^{(p)} \equiv \operatorname{Var}\left(\left|\mathcal{P}_{k, n}^{(p)}\right|\right)=n p_{k, n}^{(p)}\left(1-p_{k, n}^{(p)}\right)+n(n-1)\left[E \mathbf{1}_{\left\{1,2 \in \mathcal{P}_{k_{n}, n}^{(p)}\right\}}-p_{k, n}^{(p)}{ }^{2}\right] \tag{28}
\end{equation*}
$$

Remark 6 When k is fixed and $n \rightarrow \infty$, both the expectation $n p_{k, n}^{(p)}$ and variance $V_{k, n}^{(p)}$ approach to zero as $n \rightarrow \infty$, hence the limiting distribution of the Pareto-front size is degenerate. An interesting question for future work is whether there exists a sequence $k=k_{n}$ such that the limiting distribution of the Pareto-front size is non-degenerate.

3.3 Numerical Results

A numerical comparison between the Bernoulli and continuous case is shown in Figure 1. The difference in the asymptotic behaviour between $p_{k, n}^{(p)}, q_{k, n}^{(p)}$ and $p_{k, n}\left(=q_{k, n}\right)$ for fixed k as $n \rightarrow \infty$ is shown in Figure 1.a. A numerical demonstration for the different behaviour of $p_{k_{n}, n}$ for $k_{n}=c \log (n)$ when $c<1$ and $c>1$ is shown in Figure 1.b. Similarly, the phase transition for Bernoulli(0.5) is presented in Figure 11c, illustrating the phase transition at $\gamma=\frac{1}{2} \log (2)$, compared to $\gamma=1$ for the continuous case.

Furthermore, as we have already shown, for fixed k the asymptotic behaviours of $p_{k, n}^{(p)}$ and $q_{k, n}^{(p)}$ as $n \rightarrow \infty$ are very different. However, when both $k, n \rightarrow \infty$, Figure 1] c suggests that the phase transition established by Theorem 1 for $p_{k, n}^{(p)}$ also holds for $q_{k, n}^{(p)}$. This issue may be developed as part of a future research.

For numerical calculation of $p_{k, n}$ we have used the recurrence relation (18), because the alternating sum in the combinatorial formula (17) causes numerical instabilities. As a result, computing $p_{k, n}$ for fixed k requires $O(n)$ operations, and $p_{k . n}$ was calculated for values up to $n=10^{7}$ in Figure 1 b. In contrast, the discrete combinatorial formula (23) for $p_{k, n}^{(p)}$ can be applied directly, enabling us to compute this probability for much larger values of n (up to $n \approx 10^{130}$) in Figure 1 c.

The code for all numeric calculations is freely available at https://github.com/orzuk/Pareto.

Figure 1: a. Value of $p_{k, n}=q_{k, n}$ (solid lines), $q_{k, n}^{(0.5)}$ (dashed lines) and $p_{k, n}^{(0.5)}$ (dotted lines) as a function of n, shown on a log-scale, for $k=1, . .5$. While $p_{k, n}^{(n)}<p_{k, n}$ for all k and n, when n is large $q_{k, n}^{(0.5)}$ can exceed $p_{k, n}$. b. Value of $\log \left(p_{k_{n}, n}\right)$ for the continuous case using the exact combinatorial formula (line-connected circles) for $k_{n}=\left\lfloor(c \log (n)\rfloor\right.$ for n from 1 to 10^{7} and k_{n} up to $\left\lfloor\left(c \log \left(10^{7}\right)\right\rfloor\right.$ for each c. Numerically, we were able to compute $p_{k, n}$ accurately only for small values of k, due to the recurrence relation in 18 and the alternating sum in 17 . For $c \leq 0.8$ the curves decrease with n, consistent with our result that $p_{k_{n}, n} \rightarrow 0$ for this case. For $c \geq 1.2$ the curves increase towards zero with n, consistent with our result that $p_{k_{n}, n} \rightarrow 1$ for this case. For $c=1$ there seems to be a slight increase in $p_{k_{n}, n}$ too, but results are inconclusive. c. Value of $\log \left(p_{k_{n}, n}^{(0.5)}\right)$ ('x' symbols) and $\log \left(q_{k_{n}, n}^{(0.5)}\right.$) ('o' symbols) for the Bernoulli(0.5) case, for $k_{n}=c \log (n)$ for different values of c. For $c<\gamma=\frac{\log (2)}{2}=0.34657$ the log-probabilities approach 0 , whereas for $c>\gamma$ the log-probabilities decreases to $-\infty$. For all values of c, the ratio $\frac{q_{k_{n}, n}^{(0.5)}}{p_{k_{n}, n}^{(0,5)}}$ approaches 1 as $n \rightarrow \infty$.

4 Proof of Theorem 1

For every $i \geq 2$, let

$$
\begin{equation*}
G_{i}^{1} \equiv \min \left\{k \geq 1 ; X_{i k}>X_{1 k}\right\}-1 \tag{29}
\end{equation*}
$$

Observe that $X_{i}^{k} \preceq X_{1}^{k}$ for every $1 \leq k \leq G_{i}^{1}$ and $X_{i}^{k} \npreceq X_{1}^{k}$ for every $k>G_{j}^{1}$. In particular, this implies that for every $n, k \geq 1$,

$$
\begin{equation*}
1 \in \mathcal{P}_{k, n} \Leftrightarrow M_{n}^{1} \equiv \max _{2 \leq i \leq n} G_{i}^{1} \leq k \tag{30}
\end{equation*}
$$

with the convention that a maximum over an empty-set of numbers equals zero. Thus, the asymptotic behaviour of $\mathbf{1}_{\mathcal{P}_{k, n}}(1)$ as $n, k \rightarrow \infty$ is strongly related to the asymptotic behaviour of M_{n}^{1} as $n \rightarrow \infty$. Observe that M_{n}^{1} is a maximum of $n-1$ identically distributed dependent geometric random variables $G_{2}^{1}, G_{3}^{1}, \ldots, G_{n}^{1}$ having a success probability $P\left(X_{11}>X_{21}\right)$. The following lemma couples M_{n}^{1} with a maximum of $n-1$ independent geometric random variables.

Lemma 1 Let G_{2}, G_{3}, \ldots be an iid sequence of geometric random variables with success probability $\alpha \in$ $(0,1)$. For every $n \geq 1$, denote $M_{n} \equiv M_{n}^{(\alpha)} \equiv \max _{2 \leq i \leq n} G_{i}$, and assume that $\left\{G_{i} ; i \geq 2\right\}$ and $\left\{X_{i j} ; i, j \geq 1\right\}$ are independent.

1. If $1-\alpha<e^{-\gamma}$, then there exists a P-a.s. finite random variable N_{α} such that

$$
\begin{equation*}
M_{n} \leq M_{n}^{1} \quad, \quad \forall n \geq N_{\alpha} \tag{31}
\end{equation*}
$$

2. If $1-\alpha>e^{-\gamma}$, then there exists a P-a.s. finite random variable N_{α} such that

$$
\begin{equation*}
M_{n} \geq M_{n}^{1} \quad, \quad \forall n \geq N_{\alpha} \tag{32}
\end{equation*}
$$

Proof: For every $k \geq 1$ denote

$$
\begin{equation*}
\tau_{k}^{1} \equiv \min \left\{i \geq 2 ; M_{i}^{1} \geq k\right\} \quad, \quad \tau_{k} \equiv \min \left\{i \geq 2 ; M_{i} \geq k\right\} \tag{33}
\end{equation*}
$$

Conditioned on $X_{1} \equiv\left(X_{1 j}\right)_{j=1}^{\infty}$, the events

$$
\begin{equation*}
\left\{X_{i}^{k} \preceq X_{1}^{k}\right\} \quad, \quad i \geq 2 \tag{34}
\end{equation*}
$$

are independent. Therefore, the random variables τ_{k}^{1} and τ_{k} are conditionally independent given X_{1}, such that

$$
\begin{equation*}
\tau_{k}^{1} \mid X_{1}-1 \sim \mathrm{Geo}\left(\prod_{j=1}^{k} S\left(X_{1 j}\right)\right) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{k}-1 \sim \operatorname{Geo}\left((1-\alpha)^{k}\right) \tag{36}
\end{equation*}
$$

In addition, as explained in Section $2.4 S\left(X_{11}\right), S\left(X_{12}\right), \ldots$ are iid random variables and $-E \log S\left(X_{11}\right)=$ $\gamma \in(0,1]$. Therefore, by the strong law of large numbers

$$
\begin{equation*}
L_{k} \equiv \frac{1}{k} \sum_{j=1}^{k}\left[-\log S\left(X_{1 j}\right)\right] \xrightarrow{k \rightarrow \infty} \gamma \quad, \quad P \text {-a.s. } \tag{37}
\end{equation*}
$$

and it follows that $e^{L_{k}} \xrightarrow{k \rightarrow \infty} e^{\gamma}, P$-a.s. and $e^{-k L_{k}} \xrightarrow{k \rightarrow \infty} 0, P$-a.s.
Consider the case where $1-\alpha<e^{-\gamma}$. Then, 37) implies that there exists a P-a.s. finite random variable K_{α} which is uniquely determined by X_{1} such that for every $k>K_{\alpha}$

$$
\begin{equation*}
(1-\alpha) e^{L_{k}} \leq \frac{1+(1-\alpha) e^{\gamma}}{2} \equiv \zeta_{\alpha}<1 \tag{38}
\end{equation*}
$$

In addition, $e^{-k L_{k}} \leq 1$ for every $k \geq 1$. Therefore, by a well-known result about a minimum of two independent geometric random variables, deduce that

$$
\begin{align*}
\sum_{k=K_{\alpha}}^{\infty} P\left(\tau_{k} \leq \tau_{k}^{1} \mid X_{1}\right) & =\sum_{k=K_{\alpha}}^{\infty} P\left(\tau_{k}-1 \leq \tau_{k}^{1}-1 \mid X_{1}\right) \tag{39}\\
& =\sum_{k=K_{\alpha}}^{\infty} \frac{(1-\alpha)^{k}}{(1-\alpha)^{k}+e^{-k L_{k}}-(1-\alpha)^{k} e^{-k L_{k}}} \\
& \leq \sum_{k=K_{\alpha}}^{\infty}\left[(1-\alpha) e^{L_{k}}\right]^{k} \\
& \leq \sum_{k=K_{\alpha}}^{\infty} \zeta_{\alpha}^{k}<\infty
\end{align*}
$$

Thus, the Borel-Cantelli lemma implies that

$$
\begin{equation*}
P\left(\tau_{k} \leq \tau_{k}^{1}, \text { i.o } \mid X_{1}\right)=0 \quad, \quad P \text {-a.s. } \tag{40}
\end{equation*}
$$

and hence

$$
\begin{equation*}
P\left(\tau_{k} \leq \tau_{k}^{1}, \text { i.o }\right)=E\left[P\left(\tau_{k} \leq \tau_{k}^{1}, \text { i.o } \mid X_{1}\right)\right]=0 \tag{41}
\end{equation*}
$$

which yields the required result when $(1-\alpha) e^{\gamma}<1$.
Assume that $1-\alpha>e^{-\gamma}$. Then, applying similar arguments to those which appear above yield the existence of a P-a.s. finite random variable K_{α} such that for any $k>K_{\alpha}$:

$$
\begin{equation*}
(1-\alpha) e^{L_{k}} \geq \frac{1+(1-\alpha) e^{\gamma}}{2} \equiv \zeta_{\alpha} \tag{42}
\end{equation*}
$$

such that $\zeta_{\alpha}>1$. In addition, for every $k \geq 1,(1-\alpha)^{k} \leq 1$ and hence

$$
\begin{align*}
\sum_{k=K_{\alpha}}^{\infty} P\left(\tau_{k} \geq \tau_{k}^{1} \mid X_{1}\right) & =\sum_{k=K_{\alpha}}^{\infty} P\left(\tau_{k}-1 \geq \tau_{k}^{1}-1 \mid X_{1}\right) \tag{43}\\
& =\sum_{k=K_{\alpha}}^{\infty} \frac{e^{-k L_{k}}}{(1-\alpha)^{k}+e^{-k L_{k}}-(1-\alpha)^{k} e^{-k L_{k}}} \\
& \leq \sum_{k=K_{\alpha}}^{\infty}\left[(1-\alpha) e^{L_{k}}\right]^{-k} \\
& \leq \sum_{k=K_{\alpha}}^{\infty} \zeta_{\alpha}^{-k}<\infty
\end{align*}
$$

Thus, the claim follows from the Borél-Cantelli lemma using a similar argument as in the previous case.

Proof of Theorem 1 (continuation)

It is possible to apply Lemma 1 in order to show that

$$
\begin{equation*}
\frac{M_{n}^{1}}{\log (n)} \xrightarrow{n \rightarrow \infty} \gamma^{-1} \quad, \quad P \text {-a.s. } \tag{44}
\end{equation*}
$$

To this end, fix $\epsilon>0$ and let $0<\alpha_{1}, \alpha_{2}<1$ be such that

$$
\left(1-\alpha_{1}\right) e^{\gamma}<1<\left(1-\alpha_{2}\right) e^{\gamma}
$$

and

$$
\begin{equation*}
\left|\gamma^{-1}-\left[\log \left(1-\alpha_{l}\right)\right]^{-1}\right|<\frac{\epsilon}{2} \quad, \quad \forall l=1,2 \tag{45}
\end{equation*}
$$

Now, consider two independent iid sequences $G_{2}^{\left(\alpha_{1}\right)}, G_{3}^{\left(\alpha_{1}\right)}, \ldots$ and $G_{2}^{\left(\alpha_{2}\right)}, G_{3}^{\left(\alpha_{2}\right)}, \ldots$ such that $G_{1}^{\left(\alpha_{l}\right)} \sim$ $\operatorname{Geo}\left(\alpha_{l}\right)$ for $l=1,2$. Respectively, define the corresponding sequences of partial maxima

$$
\begin{equation*}
M_{n}^{\left(\alpha_{l}\right)} \equiv \max _{2 \leq i \leq n} G_{i}^{\alpha_{l}} \quad, \quad n \geq 2 \tag{46}
\end{equation*}
$$

for each $l=1,2$ as described in the statement of Lemma 1 Then, Lemma 1 implies that there exists P-a.s. finite random variables $N_{\alpha_{1}}$ and $N_{\alpha_{2}}$ such that

$$
\begin{equation*}
M_{n}^{\left(\alpha_{1}\right)} \leq M_{n}^{1} \leq M_{n}^{\left(\alpha_{2}\right)} \quad, \quad \forall n \geq \max \left(N_{\alpha_{1}}, N_{\alpha_{2}}\right) \equiv N \tag{47}
\end{equation*}
$$

Furthermore, Theorem 2 of [1] yields that for each $l=1,2$

$$
\begin{equation*}
\frac{M_{n}^{\left(\alpha_{l}\right)}}{\log (n)} \xrightarrow{n \rightarrow \infty}-\left[\log \left(1-\alpha_{l}\right)\right]^{-1} \quad, \quad P \text {-a.s. } \tag{48}
\end{equation*}
$$

As a result, there exists a P-a.s. finite random variable $N^{*} \geq N$ such that for every $n \geq N^{*}$ one has

$$
\begin{equation*}
\gamma^{-1}-\frac{\epsilon}{2} \leq \frac{M_{n}^{\left(\alpha_{1}\right)}}{\log (n)} \leq \frac{M_{n}^{1}}{\log (n)} \leq \frac{M_{n}^{\left(\alpha_{2}\right)}}{\log (n)} \leq \gamma^{-1}+\frac{\epsilon}{2} \tag{49}
\end{equation*}
$$

and hence (44) follows.
Therefore, (5) implies that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{k_{n}}{\log (n)}=\liminf _{n \rightarrow \infty} \frac{k_{n}}{\log (n)} \cdot \frac{\log (n)}{M_{n}^{i}}>1 \quad, \quad P \text {-a.s. } \tag{50}
\end{equation*}
$$

and hence (30) yields that $\mathbf{1}_{\mathcal{P}_{k_{n}, n}}(1) \xrightarrow{n \rightarrow \infty} 1, P$-a.s. Similarly, (7) implies that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{k_{n}}{\log (n)}=\limsup _{n \rightarrow \infty} \frac{k_{n}}{\log (n)} \cdot \frac{\log (n)}{M_{n}^{i}}<1 \quad, \quad P \text {-a.s. } \tag{51}
\end{equation*}
$$

and hence 30 yields that $\mathbf{1}_{\mathcal{P}_{k_{n}, n}}(1) \xrightarrow{n \rightarrow \infty} 0, P$-a.s.

References

[1] Thomas S. Ferguson. On the asymptotic distribution of max and mex. Statistical Papers, 34(1):97111, 1993.
[2] Charles Blair. Random inequality constraint systems with few variables. Mathematical Programming, 35(2):135-139, 1986.
[3] Wei-Mei Chen, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Maxima-finding algorithms for multidimensional samples: A two-phase approach. Computational Geometry, 45(1-2):33-53, 2012.
[4] Luc Devroye. A note on the expected time for finding maxima by list algorithms. Algorithmica, 23(2):97-108, 1999.
[5] Martin E Dyer and John Walker. Dominance in multi-dimensional multiple-choice knapsack problems. Asia-Pacific Journal of Operational Research, 15(2):159, 1998.
[6] Mordecai J Golin. A provably fast linear-expected-time maxima-finding algorithm. Algorithmica, 11(6):501-524, 1994.
[7] Tsung-Hsi Tsai, Hsien-Kuei Hwang, and Wei-Mei Chen. Efficient maxima-finding algorithms for random planar samples. Discrete Mathematics \& Theoretical Computer Science, 6, 2003.
[8] Barry O'Neill. The number of outcomes in the pareto-optimal set of discrete bargaining games. Mathematics of Operations Research, 6(4):571-578, 1981.
[9] Gérard Biau and Erwan Scornet. A random forest guided tour. Test, 25(2):197-227, 2016.
[10] Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random forests. The Annals of Statistics, 43(4):1716-1741, 2015.
[11] Zhi-Dong Bai, Chern-Ching Chao, Hsien-Kuei Hwang, and Wen-Qi Liang. On the variance of the number of maxima in random vectors and its applications. The Annals of Applied Probability, 8(3):886-895, 1998.
[12] Zhi-Dong Bai, Luc Devroye, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Maxima in hypercubes. Random Structures \& Algorithms, 27(3):290-309, 2005.
[13] Andrew D Barbour and A Xia. The number of two-dimensional maxima. Advances in Applied Probability, 33(4):727-750, 2001.
[14] Ole Barndorff-Nielsen and Milton Sobel. On the distribution of the number of admissible points in a vector random sample. Theory of Probability \& Its Applications, 11(2):249-269, 1966.
[15] Yuliy Baryshnikov. Supporting-points processes and some of their applications. Probability Theory and Related Fields, 117(2):163-182, 2000.
[16] Hsien-Kuei Hwang. Phase changes in random recursive structures and algorithms. In Probability, Finance and Insurance, pages 82-97. World Scientific, 2004.
[17] Hsien-Kuei Hwang. Sur la repartition des valeurs des fonctions arithmetiques. le nombre de facteurs premiers d'un entier. Journal of Number Theory, 69(2):135-152, 1998.
[18] Hsien-Kuei Hwang. A poisson* geometric convolution law for the number of components in unlabelled combinatorial structures. Combinatorics, Probability and Computing, 7(1):89-110, 1998.

[^0]: *This author was supported by the GIF Grant 1489-304.6/2019.

