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Abstract

Consider n iid real-valued random vectors of size k having iid coordinates with a general distribution

function F . A vector is a maximum if and only if there is no other vector in the sample which weakly

dominates it in all coordinates. Let pk,n be the probability that the first vector is a maximum. The main

result of the present paper is that if k ≡ kn is growing at a slower (faster) rate than a certain factor of

log(n), then pk,n → 0 (resp. pk,n → 1) as n → ∞. Furthermore, the factor is fully characterized as a

functional of F . We also study the effect of F on pk,n, showing that while pk,n may be highly affected

by the choice of F , the phase transition is the same for all distribution functions up to a constant factor.

1 Introduction

Consider a model with a sample of n iid random vectors of size k. It is assumed that the coordinates

are iid real-valued random variables having a general distribution function F . A vector is said to be a

(strong) maximum if and only if (iff) there is no other vector in the sample which (weakly) dominates

it in all coordinates. Let pk,n be the probability that the first vector is a maximum. Once k (resp. n)

is fixed, then pk,n → 0 (resp. pk,n → 1) as n → ∞ (resp. k → ∞). The main contribution of the

present work is a generalization of this straightforward observation by allowing k to be determined as a

function of n. Namely, we will show that if k ≡ kn is grows at a slower (resp. faster) rate than γ log(n),

then pk,n → 0 (resp. pk,n → 1) as n → ∞, where γ ∈ (0, 1] is a certain constant that depends on the

distribution F . The derivation of this result uses extreme value theory, and in particular relies on a

result from of Ferguson [1] about the asymptotic behaviour of a maximum of iid sequence of geometric

random variables.

The asymptotic behaviour of pk,n has an important role in many applications. For example, in analysis

of linear programming [2] and of maxima-finding algorithms [3–7]. Furthermore, it is also related to game

theory [8] and analysis of random forest algorithms [9,10]. This literature focuses mainly on asymptotic

results once F is a continuous function, k is fixed and n tends to infinity [8, 11–16]. Both [8] and [14]

contain an approximation of the expected number of maxima. In addition, an approximation of the

variance of the number of maxima is given in [11] and asymptotic normality of this number was proved

in [12].

To the best of our knowledge, the only paper that includes asymptotic results as n → ∞ and k is

determined as a function of n is [16]. In the last equation of Section 1.1 of [16] there is a first order
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approximation of pk,n. This approximation holds uniformly for all possible forms of variations of k as a

function of n which tends to infinity. In particular, it yields existence of a non-trivial phase-transition at

k ≈ log(n) which is consistent with our findings. While [16] refers only to a continuous F , the current

results hold for a general F .

The rest is organized as follows: Section 2 contains a precise description of the model with a statement

of the main result. In particular, the functional γ of F that determines the localization of the phase

transition is presented (with the proof deferred to Section 4). Section 3 is devoted to exploring the effect

of the distribution F on the probability pk,n, with two important special cases: Section 3.1 is about the

continuous case and includes a detailed discussion of the relation between the current results and the

approximation which appears in [16]. Section 3.2 is about a simple example in which the coordinates

have a Bernoulli distribution. This example illustrates two things:

1. While pk,n is the same for every continuous F , it might have a different asymptotic behaviour for

fixed k as n → ∞, once the continuity assumption is relaxed. Given these differences, it is a bit

surprising that the phase-transition for pk,n is the same for all distribution functions up to the

factor γ.

2. Even for a special case in which there is a simple exact combinatorial formula for pk,n, it is unclear

how to utilize this formula in order to derive the main result directly.

2 Model description and the main result

In the sequel, for every set A and a potential element a, denote the corresponding indicator function

1A(a) ≡

1, a ∈ A,

0, a /∈ A.
(1)

In addition, in several places of this manuscript we denote the minimum (resp. maximum) of some real

numbers x1, x2, . . . , xn by ∧
i
xi ≡ mini xi (resp. ∨

i
xi ≡ maxi xi).

2.1 Multivariate maximum

The following is a common definition of a maximum of a set of vectors in Rk. It is based on the product

order � on Rk, i.e., for every two vectors a, b ∈ Rk such that a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk)

define

a � b⇔ (ai ≤ bi , ∀1 ≤ i ≤ k) . (2)

Similarly, define

a ≺ b⇔ (a � b and ∃i ∈ [k] s.t. ai < bi) . (3)

Definition 1 Let x1, x2, . . . , xn be n vectors in Rk. In addition, let � be the product order on Rk.

Then, for each 1 ≤ i ≤ n, xi is a maximum with respect to x1, x2, . . . , xn iff there is no j 6= i such that

xi � xj. In addition, the set of maxima with respect to x1, x2, . . . , xn is called the Pareto-front generated

by x1, x2, . . . , xn.

Remark 1 Definition 1 refers to a strong maximum. To see this, consider the special case in which

k = 1 and x1 = x2 = . . . = xn. In this case, x1, x2, . . . , xn are all maxima in the usual sense but none

of them is a maximum in the sense of Definition 1. While this example illustrates a situation in which

there is no maximum in the sense of Definition 1, it is possible to have multiple maxima in that sense.

For instance assume that n = k = 2 and consider the case in which x1 = (1, 0) and x2 = (0, 1).

Remark 2 It is natural to introduce another notion of multivariate maximum: xi is a weak maximum

with respect to x1, x2, . . . , xn iff there is no j 6= i such that xi ≺ xj . Correspondingly, the set of weak

maxima with respect to x1, x2, . . . , xn is called the weak Pareto-front generated by x1, x2, . . . , xn. Later,

in Section 3.2 we discuss this notion once the coordinates have a Bernoulli distribution.
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2.2 Problem description

Let {Xij ; i, j ≥ 1} be an infinite array of iid real-valued random variables having a distribution function

F . For every i, k ≥ 1 denote Xk
i ≡ (Xi1, . . . , Xik) and for every k, n ≥ 1, let Pk,n be the (random)

set of all indices of vectors which belong to the Pareto-front generated by Xk
1 , X

k
2 , . . . , X

k
n. An initial

observation is that:

1. For every fixed k ≥ 1, 1Pk,n(1)
n→∞−−−−→ 0 , P -a.s.

2. For every fixed n ≥ 1, 1Pk,n(1)
k→∞−−−−→ 1 , P -a.s.

The main question is how to generalize this observation by characterizing the asymptotic behaviour of

1{Pkn,n}(1) as n→∞ for a general sequence (kn)∞n=1?

2.3 Main result

Let X be a random variable with cumulative distribution function F . Define the function S : R→ [0, 1]

as S(x) ≡ P (X ≥ x). When F is continuous, S is the corresponding survival function. Next, define

γ ≡ γF ≡ −E log [S(X)] (4)

and the following theorem is the main result. Its proof is given in Section 4.

Theorem 1 Let k1, k2, . . . be a sequence of positive integers

(a) If

lim inf
n→∞

kn
log(n)

> γ−1 , (5)

then

1Pkn,n(1)
n→∞−−−−→ 1 , P -a.s. (6)

(b) If

lim sup
n→∞

kn
log(n)

< γ−1 , (7)

then

1Pkn,n(1)
n→∞−−−−→ 0 , P -a.s. (8)

For every k, n ≥ 1, denote

pk,n ≡ P (1 ∈ Pk,n) = E1Pk,n(1) . (9)

Then, an application of bounded convergence theorem yields the following corollary.

Corollary 1 Let k1, k2, . . . be a sequence of positive integers.

(a’)

lim inf
n→∞

kn
log(n)

> γ−1 ⇒ lim
n→∞

pkn,n = 1. (10)

(b’)

lim sup
n→∞

kn
log(n)

< γ−1 ⇒ lim
n→∞

pkn,n = 0. (11)

2.4 The factor γ

Define

S−1(y) ≡ inf {x ∈ R;S(x) ≤ y} , y ∈ (0, 1). (12)
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Since S is a nonincreasing leftcontinuous function, S
[
S−1(y)

]
≤ y for every y ∈ (0, 1). By definition,

− log [S(X)] ≥ 0 and hence is well-defined and nonnegative. Furthermore, the usual formula for an

expectation of a nonnegative random variable yields that

γ =

∫ ∞
0

P [− log [S(X)] > t] dt (13)

=

∫ ∞
0

P
[
S(X) < e−t

]
dt

=

∫ ∞
0

P
[
X > S−1 (e−t)] dt

=

∫ ∞
0

S
[
S−1 (e−t)] dt

≤
∫ ∞
0

e−tdt = 1 .

When F is continuous, the last inequality above holds with equality which yields that γ = 1. Moreover,

γ = 0 if and only if S ≡ 1, which means that X is infinite. Thus, the assumption that X is real-valued

implies that γ ∈ (0, 1]. For example, when the coordinates have a Bernoulli(p) distribution for some

p ∈ (0, 1),

S(x) =


1, x ≤ 0,

p, 0 < x ≤ 1,

0, 1 < x.

(14)

Therefore,

γ = −p log(S(1))− (1− p) log(S(0)) = −p log(p) (15)

and hence γ = e−1 ≈ 0.368 is the maximal value of γ for the Bernoulli case, obtained at p = e−1.

3 The effect of the distribution F

In this section we study the effect of the distribution F of the individual variables Xij , on the distribution

of the number of maxima. We specify the dependence on F explicitly, denoting P(F )
k,n the (random)

maximal set and p
(F )
k,n the probability of being a maxima when Xij ∼ F . Similarly, we denote by Q(F )

k,n

the weak Pareto-front generated by Xk
1 , .., X

k
n (see Remark 2), and define

q
(F )
k,n ≡ P

(
1 ∈ Q(F )

k,n

)
= E1Q(F )

k,n

(1) . (16)

By definition Xk
j � Xk

i ⇒ Xk
j < Xk

i , hence P(F )
k,n ⊆ Q

(F )
k,n and p

(F )
k,n ≤ q

(F )
k,n . In particular, when F is

continuous, P(F )
k,n = Q(F )

k,n , P -a.s., hence p
(F )
k,n = q

(F )
k,n . In addition, p

(F )
k,n is invariant to F as long as F is

continuous, hence pk,n ≡ p
(F )
k,n = q

(F )
k,n without the specification of F will refer to a general continuous

distribution.

Proposition 1 below shows that the continuous and the Bernoulli distributions are extreme cases, in

the sense that for every distribution F , the probability of being a (strong) maxima lies between them. To

shorten notation, for every p ∈ (0, 1), let p
(p)
k,n be the probability of being a maximum once the coordinates

have a Bernoulli(p) distribution.

Proposition 1 Let p
(F )
k,n be defined as above for a general F . Then,

1. p
(F )
k,n ≤ pk,n.

2. p
(p)
k,n ≤ p

(F )
k,n for every p ∈ {1− F (x);x ∈ R}.

Proof:
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1. Let F be an arbitrary probability distribution and let U be the distribution function of random

variable which is uniformly distributed on [0, 1]. The random variables Xij ∼ F can be realized

by taking uniform random variables Uij ∼ U , and then taking the transformation Xij = F−1(Uij),

where F−1 is the pseudo-inverse of F . Thus, since F−1 is nondecreasing we have Ukj < Uki ⇒ Xk
j <

Xk
i and hence Xk

i ∈ P
(F )
k,n ⇒ Uki ∈ P

(U)
k,n . Therefore, P(F )

k,n ⊆ P
(U)
k,n and hence p

(F )
k,n ≤ pk,n.

2. Take x with p ≡ 1 − F (x) and define Bij = 1{Xij>x}. Since Bij is defined as a nondecreasing

transformation of Xij , then Bji ∈ P
(p)
k,n ⇒ Xj

i ∈ P
(F )
k,n . As a result, P(p)

k,n ⊆ P
(F )
k,n and hence

p
(p)
k,n ≤ p

(F )
k,n .

Remark 3 While p
(F )
k,n ≤ pk,n for any F (i.e. discretization may only reduce the probability of being

a strong maximum), there is no general ordering that always holds between q
(F )
k,n and qk,n. This is

demonstrated numerically for the Bernoulli distribution in Section 3.2.

Since the values p
(F )
k,n for every distribution F of the Xij ’s can be bounded by the values for the

continuous and Bernoulli case, we compare these two cases to study the effect of quantization on the

probability of a random vector being a maximum.

3.1 Continuous distribution

For every k, n ≥ 1, there are well-known exact formulas for pk,n (see e.g. [12]):

1.

pk,n =

n∑
u=1

(
n− 1

u− 1

)
(−1)u−1

uk
. (17)

2.

pk,n =


1

n

n∑
u=1

pk−1,u, k > 1,

1

n
, k = 1,

(18)

and hence, for every k > 1 one has

pk,n =
1

n

∑
u∈Uk,n

1

u1u2...uk−1
(19)

where

Uk,n ≡
{
u = (u1, . . . , uk−1) ∈ Zk−1 ; 1 ≤ u1 ≤ u2 ≤ . . . ≤ uk−1 ≤ n

}
. (20)

Furthermore, it is well known (see, e.g., [14]) that for every fixed k,

pk,n ∼
logk−1(n)

n(k − 1)!
as n→∞ . (21)

For a fixed k, other asymptotic results results regarding the size of the Pareto-front as n → ∞ include

some asymptotic formulas for the variance [11] and a corresponding central limit theorem [12].

Hwang [16] applied analytic techniques (see, [17], [18]) to these identities in order to derive an ap-

proximation of pk,n as n→∞ and k is determined as a function of n. Specifically, denote the cumulative

distribution function of a standard normal random variable by Φ(·) and let Γ(·) be the Gamma function.

Then, the first order approximation which appears in [16] is

pk,n ∼


logk−1(n)
n(k−1)!

Γ
[
1− k

log(n)

]
, log(n)− k �

√
log(n),

Φ

[
k−log(n)√

log(n)

]
, |k − log(n)| = o

[
log

2
3 (n)

]
,

1, log(n)− k �
√

log(n),

(22)
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and it holds uniformly for all variations of k as n → ∞. Since γ = 1 for every continuous F , it may be

verified that (22) implies Corollary 1. However, since convergence in P does not imply convergence P -

a.s., it is not straightforward to deduce Theorem 1 from (22). In fact, Hwang [16] put forth the question

of whether exists a probabilistic explanation for the phase-transition at k ≈ log(n)? Observe that while

Theorem 1 yields some probabilistic explanation for this phenomenon, it does not supply a probabilistic

proof of (22).

3.2 Bernoulli distribution

Let Xij ∼ Bernoulli (p) for some p ∈ (0, 1). Let B1 =
∑k
j=1X1j ∼ Binom (k, p) and without loss of

generality assume that X1j = 1 for every 1 ≤ j ≤ B1 and X1j = 0 for every B1 + 1 ≤ j ≤ k. By the law

of total probability applied to B1,

p
(p)
k,n =

k∑
i=0

(
k

i

)
pi(1− p)k−i

[
P (Xk

1 6� Xk
2 |B1 = i)

]n−1

=

k∑
i=0

(
k

i

)
pi(1− p)k−i

[
1− P

(
i
∧
j=1

X2j = 1

)]n−1

=

k∑
i=0

(
k

i

)
pi(1− p)k−i

(
1− pi

)n−1

. (23)

Taking (23), we easily obtain the asymptotic result for the binary case for fixed k and n→∞. Since

(1−pi)n−1 = o
[
(1− pk)n−1

]
for all i < k as n→∞ we get that all terms in the above sum are negligible

for large n except for the last, giving the result

p
(p)
k,n ∼ p

k(1− pk)n−1 as n→∞ . (24)

A similar calculation to the one in (23) gives the probability of a weak maximum,

q
(p)
k,n =

k∑
i=0

(
k

i

)
pi(1− p)k−i

[
P (Xk

1 6≺ Xk
2 |B1 = i)

]n−1

=

k∑
i=0

(
k

i

)
pi(1− p)k−i

[
1− P

(
i
∧
j=1

X2j = 1

)
P

(
k
∨

j=i+1
X2j = 1

)]n−1

=

k∑
i=0

(
k

i

)
pi(1− p)k−i

(
1− pi + pi(1− p)k−i

)n−1

, (25)

and the asymptotic result q
(p)
k,n → pk for fixed k as n→∞.

Remark 4 For any fixed k the decay of pk,n = qk,n is sub-linear in n as n→∞ (see (21)). In contrast,

p
(p)
k,n decays to zero exponentially fast, whereas q

(p)
k,n converges to a positive constant. The result is

intuitive because for any fixed k the number of possible vectors in the binary case is finite, and the

vector (1, .., 1) (with k coordinates) appears at least once P -a.s. as n → ∞. A strong maximum may

exist only if this vector appears at most once, an event with an exponentially small probability in n.

Any occurrence of this vector is a weak maximum, yielding a positive probability not depending on n,

P
(
Xk
i = (1, .., 1)

)
= pk.

Remark 5 While (23) is an exact combinatorial formula for p
(p)
k,n, it is not straightforward to analyze

the behaviour of this combinatorial formula as n→∞ when k is determined as a general function of n.

Theorem 1 gives us the asymptotic result for pk,n as k, n→∞ without relying on the exact expression.

For a complete treatment of the case in which the coordinates have Bernoulli(p) distribution, we

derive here a combinatorial formula for the variance. Let Bij =
∑k
r=1X

i
1r(1−X1j)

1−iXj
2r(1−X2r)

1−j

for i, j = 0, 1. The quartet (B00, B01, B10, B11) has a multinomial distribution:

(B00, B01, B10, B11) ∼Multinomial
(
k,
(
(1− p)2, p(1− p), p(1− p), p2

))
. (26)
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Conditioning on their value yields a combinatorial formula for the probability that both X1 and X2

belong to the Pareto-front.

E1{1,2∈P(p)
kn,n

} =
∑

a,b,c,d≥0:
a+b+c+d=k

(
k

a b c d

)[
P (Xk

1 , X
k
2 6� Xk

3 |B00 = a,B01 = b,B10 = c,B11 = d)
]n−2

1{b,c>0}

=
∑

a,d≥0 ; b,c≥1:
a+b+c+d=k

(
k

a b c d

)[
1− P

({{ a+b
∧

j=a+1
X3j = 1

}⋃{ k−d
∧

j=a+b+1
X3j = 1

}}⋂{
k
∧

j=k−d+1
X3j = 1

})]n−2

=
∑

a,d≥0 ; b,c≥1:
a+b+c+d=k

(
k

a b c d

)[
1− pd(pb + pc − pb+c)

]n−2

. (27)

and the variance is given by:

V
(p)
k,n ≡ V ar(|P

(p)
k,n|) = np

(p)
k,n(1− p(p)k,n) + n(n− 1)[E1{

1,2∈P(p)
kn,n

} − p(p)k,n2
]. (28)

Remark 6 When k is fixed and n → ∞, both the expectation np
(p)
k,n and variance V

(p)
k,n approach to

zero as n → ∞, hence the limiting distribution of the Pareto-front size is degenerate. An interesting

question for future work is whether there exists a sequence k = kn such that the limiting distribution of

the Pareto-front size is non-degenerate.

3.3 Numerical Results

A numerical comparison between the Bernoulli and continuous case is shown in Figure 1. The difference

in the asymptotic behaviour between p
(p)
k,n, q

(p)
k,n and pk,n(= qk,n) for fixed k as n→∞ is shown in Figure

1.a. A numerical demonstration for the different behaviour of pkn,n for kn = c log(n) when c < 1 and

c > 1 is shown in Figure 1.b. Similarly, the phase transition for Bernoulli(0.5) is presented in Figure 1.c,

illustrating the phase transition at γ = 1
2

log(2), compared to γ = 1 for the continuous case.

Furthermore, as we have already shown, for fixed k the asymptotic behaviours of p
(p)
k,n and q

(p)
k,n as

n→∞ are very different. However, when both k, n→∞, Figure 1.c suggests that the phase transition

established by Theorem 1 for p
(p)
k,n also holds for q

(p)
k,n. This issue may be developed as part of a future

research.

For numerical calculation of pk,n we have used the recurrence relation (18), because the alternating

sum in the combinatorial formula (17) causes numerical instabilities. As a result, computing pk,n for

fixed k requires O(n) operations, and pk.n was calculated for values up to n = 107 in Figure 1.b. In

contrast, the discrete combinatorial formula (23) for p
(p)
k,n can be applied directly, enabling us to compute

this probability for much larger values of n (up to n ≈ 10130) in Figure 1.c.

The code for all numeric calculations is freely available at https://github.com/orzuk/Pareto.
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Figure 1: a. Value of pk,n = qk,n (solid lines), q
(0.5)
k,n (dashed lines) and p

(0.5)
k,n (dotted lines) as a function of n, shown on

a log-scale, for k = 1, .., 5. While p
(n)
k,n < pk,n for all k and n, when n is large q

(0.5)
k,n can exceed pk,n. b. Value of log(pkn,n)

for the continuous case using the exact combinatorial formula (line-connected circles) for kn = b(c log(n)c for n from 1 to 107

and kn up to b(c log(107)c for each c. Numerically, we were able to compute pk,n accurately only for small values of k, due

to the recurrence relation in (18) and the alternating sum in (17). For c ≤ 0.8 the curves decrease with n, consistent with

our result that pkn,n → 0 for this case. For c ≥ 1.2 the curves increase towards zero with n , consistent with our result that

pkn,n → 1 for this case. For c = 1 there seems to be a slight increase in pkn,n too, but results are inconclusive. c. Value of

log(p
(0.5)
kn,n

) (’x’ symbols) and log(q
(0.5)
kn,n

) (’o’ symbols) for the Bernoulli(0.5) case, for kn = c log(n) for different values of c. For

c < γ =
log(2)

2
= 0.34657 the log-probabilities approach 0, whereas for c > γ the log-probabilities decreases to −∞. For all

values of c, the ratio
q
(0.5)
kn,n

p
(0.5)
kn,n

approaches 1 as n→∞.

4 Proof of Theorem 1

For every i ≥ 2, let

G1
i ≡ min {k ≥ 1;Xik > X1k} − 1 . (29)

Observe that Xk
i � Xk

1 for every 1 ≤ k ≤ G1
i and Xk

i 6� Xk
1 for every k > G1

j . In particular, this implies

that for every n, k ≥ 1,

1 ∈ Pk,n ⇔M1
n ≡ max

2≤i≤n
G1
i ≤ k (30)

with the convention that a maximum over an empty-set of numbers equals zero. Thus, the asymptotic

behaviour of 1Pk,n(1) as n, k → ∞ is strongly related to the asymptotic behaviour of M1
n as n → ∞.

Observe that M1
n is a maximum of n − 1 identically distributed dependent geometric random variables

G1
2, G

1
3, . . . , G

1
n having a success probability P (X11 > X21). The following lemma couples M1

n with a

maximum of n− 1 independent geometric random variables.

Lemma 1 Let G2, G3, . . . be an iid sequence of geometric random variables with success probability α ∈
(0, 1). For every n ≥ 1, denote Mn ≡ M

(α)
n ≡ max

2≤i≤n
Gi, and assume that {Gi; i ≥ 2} and {Xij ; i, j ≥ 1}

are independent.

1. If 1− α < e−γ , then there exists a P -a.s. finite random variable Nα such that

Mn ≤M1
n , ∀n ≥ Nα . (31)

2. If 1− α > e−γ , then there exists a P -a.s. finite random variable Nα such that

Mn ≥M1
n , ∀n ≥ Nα . (32)

Proof: For every k ≥ 1 denote

τ1k ≡ min
{
i ≥ 2;M1

i ≥ k
}

, τk ≡ min {i ≥ 2;Mi ≥ k} . (33)
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Conditioned on X1 ≡ (X1j)
∞
j=1, the events{

Xk
i � Xk

1

}
, i ≥ 2 (34)

are independent. Therefore, the random variables τ1k and τk are conditionally independent given X1,

such that

τ1k |X1 − 1 ∼ Geo

(
k∏
j=1

S(X1j)

)
(35)

and

τk − 1 ∼ Geo
(

(1− α)k
)
. (36)

In addition, as explained in Section 2.4, S (X11) , S (X12) , . . . are iid random variables and−E logS(X11) =

γ ∈ (0, 1]. Therefore, by the strong law of large numbers

Lk ≡
1

k

k∑
j=1

[− logS(X1j)]
k→∞−−−−→ γ , P -a.s. (37)

and it follows that eLk
k→∞−−−−→ eγ , P -a.s. and e−kLk

k→∞−−−−→ 0, P -a.s.

Consider the case where 1 − α < e−γ . Then, (37) implies that there exists a P -a.s. finite random

variable Kα which is uniquely determined by X1 such that for every k > Kα

(1− α)eLk ≤ 1 + (1− α)eγ

2
≡ ζα < 1. (38)

In addition, e−kLk ≤ 1 for every k ≥ 1. Therefore, by a well-known result about a minimum of two

independent geometric random variables, deduce that

∞∑
k=Kα

P
(
τk ≤ τ1k

∣∣X1

)
=

∞∑
k=Kα

P
(
τk − 1 ≤ τ1k − 1

∣∣X1

)
(39)

=

∞∑
k=Kα

(1− α)k

(1− α)k + e−kLk − (1− α)ke−kLk

≤
∞∑

k=Kα

[
(1− α)eLk

]k
≤

∞∑
k=Kα

ζkα <∞ .

Thus, the Borel-Cantelli lemma implies that

P
(
τk ≤ τ1k , i.o

∣∣X1

)
= 0 , P -a.s. (40)

and hence

P
(
τk ≤ τ1k , i.o

)
= E

[
P
(
τk ≤ τ1k , i.o

∣∣X1

)]
= 0 (41)

which yields the required result when (1− α)eγ < 1.

Assume that 1− α > e−γ . Then, applying similar arguments to those which appear above yield the

existence of a P-a.s. finite random variable Kα such that for any k > Kα:

(1− α)eLk ≥ 1 + (1− α)eγ

2
≡ ζα (42)
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such that ζα > 1. In addition, for every k ≥ 1, (1− α)k ≤ 1 and hence

∞∑
k=Kα

P
(
τk ≥ τ1k

∣∣X1

)
=

∞∑
k=Kα

P
(
τk − 1 ≥ τ1k − 1

∣∣X1

)
(43)

=

∞∑
k=Kα

e−kLk

(1− α)k + e−kLk − (1− α)ke−kLk

≤
∞∑

k=Kα

[
(1− α)eLk

]−k
≤

∞∑
k=Kα

ζ−kα <∞ .

Thus, the claim follows from the Borél-Cantelli lemma using a similar argument as in the previous case.

Proof of Theorem 1 (continuation)

It is possible to apply Lemma 1 in order to show that

M1
n

log(n)

n→∞−−−−→ γ−1 , P -a.s. (44)

To this end, fix ε > 0 and let 0 < α1, α2 < 1 be such that

(1− α1)eγ < 1 < (1− α2)eγ

and ∣∣γ−1 − [log(1− αl)]−1
∣∣ < ε

2
, ∀l = 1, 2. (45)

Now, consider two independent iid sequences G
(α1)
2 , G

(α1)
3 , . . . and G

(α2)
2 , G

(α2)
3 , . . . such that G

(αl)
1 ∼

Geo(αl) for l = 1, 2. Respectively, define the corresponding sequences of partial maxima

M (αl)
n ≡ max

2≤i≤n
G
αl
i , n ≥ 2 , (46)

for each l = 1, 2 as described in the statement of Lemma 1. Then, Lemma 1 implies that there exists

P -a.s. finite random variables Nα1 and Nα2 such that

M (α1)
n ≤M1

n ≤M (α2)
n , ∀n ≥ max(Nα1 , Nα2) ≡ N . (47)

Furthermore, Theorem 2 of [1] yields that for each l = 1, 2

M
(αl)
n

log(n)

n→∞−−−−→ − [log(1− αl)]−1 , P -a.s. (48)

As a result, there exists a P -a.s. finite random variable N∗ ≥ N such that for every n ≥ N∗ one has

γ−1 − ε

2
≤ M

(α1)
n

log(n)
≤ M1

n

log(n)
≤ M

(α2)
n

log(n)
≤ γ−1 +

ε

2
(49)

and hence (44) follows.

Therefore, (5) implies that

lim inf
n→∞

kn
log(n)

= lim inf
n→∞

kn
log(n)

· log(n)

M i
n

> 1 , P -a.s. (50)

and hence (30) yields that 1Pkn,n(1)
n→∞−−−−→ 1, P -a.s. Similarly, (7) implies that

lim sup
n→∞

kn
log(n)

= lim sup
n→∞

kn
log(n)

· log(n)

M i
n

< 1 , P -a.s. (51)

and hence (30) yields that 1Pkn,n(1)
n→∞−−−−→ 0, P -a.s.
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