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From Finite-System Entropy to Entropy Rate
for a Hidden Markov Process

Or Zuk, Student Member, IEEE, Eytan Domany, Ido Kanter, and Michael Aizenman

Abstract—A recent result presented the expansion for the en-
tropy rate of a hidden Markov process (HMP) as a power series in
the noise variable . The coefficients of the expansion around the
noiseless ( = 0) limit were calculated up to 11th order, using a
conjecture that relates the entropy rate of an HMP to the entropy
of a process of finite length (which is calculated analytically). In
this letter, we generalize and prove the conjecture and discuss its
theoretical and practical consequences.

Index Terms—Entropy, hidden Markov process (HMP), Taylor
series.

I. INTRODUCTION

LET be a finite state stationary Markov process over
the alphabet , and let be its noisy

observation (on the same alphabet). The process is generated
by the Markov transition matrix and the
emission matrix , where is the identity matrix, the
matrix satisfies , , , and

, and is some constant. (There is no loss
of generality here, as any stochastic matrix can be represented
as .) This yields the probabilities

and , where is
Kronecker’s delta. We consider the case of high signal to noise
ratio (“High-SNR”), characterized by small values of , and as-
sume strictly positive with a unique stationary
distribution.

The process can be viewed as an observation of through
a noisy channel. It is a hidden Markov process (HMP), gov-
erned by the parameters , , and . HMPs have a rich theory,
with applications in various fields, such as speech recognition
[1], information theory [2], and signal processing [3]. While we
concentrate on a finite-state first-order HMP, our results can be
easily generalized to more cases (e.g., continuous observations).

An important quantity for a stochastic process is the Shannon
entropy rate, which measures its “uncertainty per-symbol”
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[4]. More formally, for , let denote the vector
. The entropy rate of is defined as

(1)

where ; sometimes we omit the
realization of the variable , so should be understood as

. For a finite-entropy stationary process, the limit (1)
exists, and can also be computed via the conditional entropy
[5] as . Here, rep-
resents the conditional entropy, which for random variables
and is the average uncertainty of the conditional distribution
of given , that is, .
By the entropy chain rule, it is also given as a difference of en-
tropies, . This relation will be
used below.

There is at present no explicit expression for the entropy rate
of an HMP [2], [6]. Few recent works [6]–[8] have studied the
asymptotic behavior of in several regimes, albeit giving rigor-
ously only bounds or at most second-order [8] behavior. Here,
we generalize and prove a relationship, first posed in [8] as a
conjecture, thereby turning the computation presented there, of

as a series expansion up to 11th order in , into a rigorous
statement.

II. THEOREM STATEMENT AND PROOF

We first state our main result, which will be proven at the end
of the section.

Theorem 1: Let be the
entropy of a system of length , and let .
Let be some (complex) neighborhood of zero, in
which the functions and are analytic in , with Taylor
expansions given by

(2)

The coefficients are functions of and . From now on,
we omit this dependence. Then

(3)

Analyticity of and around was recently shown
in [9]. One may also use [10], which showed that the law of the
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process is Gibbsian, together with the complete analyticity
results for Gibbsian measures of [11], to deduce analyticity of

. is in fact an upper-bound [5] for . The behavior stated
in Theorem 1 was discovered using symbolic computations but
was proven only for , in the binary symmetric case [8].
Although it may appear technically involved, our proof is based
on two simple ideas.

First, we distinguish between the noise parameters at different
sites. We thus consider a more general process , where

’s emission matrix is . The process is deter-
mined by , , and . We define the following functions:

(4)

Setting all the ’s equal reduces this to the process, and in
particular, .

Second, we observe that if a particular is set to zero, we
must have . Thus, conditioning back to the past is
“blocked.” This is used to prove the following.

Lemma 1: If for some , then

(5)

Proof: can be written as the sum

(6)

The dependence on and , is hidden in the probabilities
. Since , we have , and conditioning

further to the past is “blocked”

(7)

Substituting in (6) gives

(8)

Let be a vector with . Define its
“weight” as . Define also

(9)

is obtained by summing the contributions of all the
vectors ’s with weight

(10)

The next lemma shows that many such ’s give zero contri-
bution to the sum.

Lemma 2: Let . If , with
, , then .

Proof: Assume first . Using lemma 1, we get

(11)

Assume now . Write the probability of

(12)

Let denote the vector we get from by changing
to (while keeping other coordinates). Differentiating with

respect to gives (see [12] for more details)

(13)

By Bayes’ rule , we
get

(14)
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This gives

(15)

and therefore

(16)

The latter equality comes from using (7), which “blocks”
the dependence backward. Equation (16) shows that
does not appear in for ; therefore,

and .
Before proving Theorem 1, we show here that adding zeros

to the left of leaves unchanged.
Lemma 3: Let with . Denote

the concatenation of and zeros to the left:
. Then

(17)

Proof: Assume first . Using lemma 1, we get

(18)

The case is reduced back to the case by taking
the derivative. Using (16) and (18), we get

(19)

This proved the claim for . The claim for larger ’s follows
by induction.

We are now ready to prove our main theorem, which follows
directly from lemmas 2 and 3.

Proof (Theorem 1): Let with . Define
its “length” as . It easily follows
from lemma 2 that . Thus,
according to lemma 3, we have

(20)

for all ’s in the sum. Summing over all with the same
“weight” gives , . How-
ever, from the analyticity of and near , it can
be shown by induction that ; therefore,

, .

III. CONCLUSION

The theorem proven above sheds light on the connection be-
tween finite and infinite chains and gives a practical and straight-
forward way to compute the entropy rate as a series expansion
in up to an arbitrary power. The surprising “settling” of the
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expansion coefficients for
holds for the entropy. For other functions involving only condi-
tional probabilities (e.g., relative entropy between two HMPs),
a weaker result holds: the coefficients “settle” for .
One can expand the entropy rate in several parameter regimes.
As it turns out, exactly the same “settling” as was proven in The-
orem 1 happens in the “almost memoryless” regime, where the
transition matrix is close to a matrix, which makes the ’s
i.i.d, (i.e., a matrix whose rows are identical). This and other
regimes, as well as the analytic behavior of the HMP [9], will
be discussed elsewhere.
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