From Finite-System Entropy to Entropy Rate for a Hidden Markov Process

Or Zuk, Student Member, IEEE, Eytan Domany, Ido Kanter, and Michael Aizenman

Abstract

A recent result presented the expansion for the entropy rate of a hidden Markov process (HMP) as a power series in the noise variable ϵ. The coefficients of the expansion around the noiseless $(\epsilon=0)$ limit were calculated up to 11th order, using a conjecture that relates the entropy rate of an HMP to the entropy of a process of finite length (which is calculated analytically). In this letter, we generalize and prove the conjecture and discuss its theoretical and practical consequences.

Index Terms-Entropy, hidden Markov process (HMP), Taylor series.

I. Introduction

LET $\left\{X_{N}\right\}$ be a finite state stationary Markov process over the alphabet $\Sigma=\{1, \ldots, s\}$, and let $\left\{Y_{N}\right\}$ be its noisy observation (on the same alphabet). The process Y is generated by the Markov transition matrix $M=M_{s \times s}=\left\{m_{i j}\right\}$ and the emission matrix $I+\epsilon T$, where I is the $s \times s$ identity matrix, the matrix $T=T_{s \times s}=\left\{t_{i j}\right\}$ satisfies $t_{i i}<0, t_{i j} \geq 0, \forall i \neq j$, and $\sum_{j=1}^{s} t_{i j}=0$, and $\epsilon>0$ is some constant. (There is no loss of generality here, as any stochastic matrix can be represented as $I+\epsilon T$.) This yields the probabilities $P\left(X_{N+1}=j \mid X_{N}=\right.$ $i)=m_{i j}$ and $P\left(Y_{N}=j \mid X_{N}=i\right)=\delta_{i j}+\epsilon t_{i j}$, where δ is Kronecker's delta. We consider the case of high signal to noise ratio ("High-SNR"), characterized by small values of ϵ, and assume strictly positive $M\left(m_{i j}>0\right)$ with a unique stationary distribution.
The process Y can be viewed as an observation of X through a noisy channel. It is a hidden Markov process (HMP), governed by the parameters M, T, and ϵ. HMPs have a rich theory, with applications in various fields, such as speech recognition [1], information theory [2], and signal processing [3]. While we concentrate on a finite-state first-order $H M P$, our results can be easily generalized to more cases (e.g., continuous observations).

An important quantity for a stochastic process is the Shannon entropy rate, which measures its "uncertainty per-symbol"

[^0][4]. More formally, for $i \leq j$, let $[Y]_{i}^{j}$ denote the vector $\left(Y_{i}, \ldots, Y_{j}\right)$. The entropy rate of Y is defined as
\[

$$
\begin{equation*}
\bar{H}(Y)=\lim _{N \rightarrow \infty} \frac{H\left([Y]_{1}^{N}\right)}{N} \tag{1}
\end{equation*}
$$

\]

where $H(Y)=-\sum_{Y} P(Y) \log P(Y)$; sometimes we omit the realization y of the variable Y, so $P(Y)$ should be understood as $P(Y=y)$. For a finite-entropy stationary process, the limit (1) exists, and \bar{H} can also be computed via the conditional entropy [5] as $\bar{H}(Y)=\lim _{N \rightarrow \infty} H\left(Y_{N} \mid[Y]_{1}^{N-1}\right)$. Here, $H(U \mid V)$ represents the conditional entropy, which for random variables U and V is the average uncertainty of the conditional distribution of U given V, that is, $H(U \mid V)=\sum_{v} P(V=v) H(U \mid V=v)$. By the entropy chain rule, it is also given as a difference of entropies, $H(U \mid V)=H(U, V)-H(V)$. This relation will be used below.

There is at present no explicit expression for the entropy rate of an $H M P$ [2], [6]. Few recent works [6]-[8] have studied the asymptotic behavior of \bar{H} in several regimes, albeit giving rigorously only bounds or at most second-order [8] behavior. Here, we generalize and prove a relationship, first posed in [8] as a conjecture, thereby turning the computation presented there, of \bar{H} as a series expansion up to 11th order in ϵ, into a rigorous statement.

II. Theorem Statement and Proof

We first state our main result, which will be proven at the end of the section.

Theorem 1: Let $H_{N} \equiv H_{N}(M, T, \epsilon)=H\left([Y]_{1}^{N}\right)$ be the entropy of a system of length N, and let $C_{N}=H_{N}-H_{N-1}$. Let $B_{\rho}(0) \subset \mathbb{C}$ be some (complex) neighborhood of zero, in which the functions $\left\{C_{N}\right\}$ and \bar{H} are analytic in ϵ, with Taylor expansions given by

$$
\begin{equation*}
C_{N}(M, T, \epsilon)=\sum_{k=0}^{\infty} C_{N}^{(k)} \epsilon^{k}, \quad \bar{H}(M, T, \epsilon)=\sum_{k=0}^{\infty} C^{(k)} \epsilon^{k} \tag{2}
\end{equation*}
$$

The coefficients $C_{N}^{(k)}$ are functions of M and T. From now on, we omit this dependence. Then

$$
\begin{equation*}
N \geq\left\lceil\frac{k+3}{2}\right\rceil \Rightarrow C_{N}^{(k)}=C^{(k)} . \tag{3}
\end{equation*}
$$

Analyticity of $\left\{C_{N}\right\}$ and \bar{H} around $\epsilon=0$ was recently shown in [9]. One may also use [10], which showed that the law of the
process Y is Gibbsian, together with the complete analyticity results for Gibbsian measures of [11], to deduce analyticity of $\bar{H} . C_{N}$ is in fact an upper-bound [5] for \bar{H}. The behavior stated in Theorem 1 was discovered using symbolic computations but was proven only for $k \leq 2$, in the binary symmetric case [8]. Although it may appear technically involved, our proof is based on two simple ideas.

First, we distinguish between the noise parameters at different sites. We thus consider a more general process $\left\{Z_{N}\right\}$, where Z_{i} 's emission matrix is $I+\epsilon_{i} T$. The process $\left\{Z_{N}\right\}$ is determined by M, T, and $[\epsilon]_{1}^{N}$. We define the following functions:

$$
\begin{equation*}
F_{N}\left(M, T,[\epsilon]_{1}^{N}\right)=H\left([Z]_{1}^{N}\right)-H\left([Z]_{1}^{N-1}\right) \tag{4}
\end{equation*}
$$

Setting all the ϵ_{i} 's equal reduces this to the Y process, and in particular, $F_{N}(M, T,(\epsilon, \ldots, \epsilon))=C_{N}(\epsilon)$.

Second, we observe that if a particular ϵ_{i} is set to zero, we must have $Z_{i}=X_{i}$. Thus, conditioning back to the past is "blocked." This is used to prove the following.

Lemma 1: If $\epsilon_{j}=0$ for some $1<j<N$, then

$$
\begin{equation*}
F_{N}\left([\epsilon]_{1}^{N}\right)=F_{N-j+1}\left([\epsilon]_{j}^{N}\right) \tag{5}
\end{equation*}
$$

Proof: F can be written as the sum

$$
\begin{align*}
F_{N}=-\sum_{[Z]_{1}^{N}}\left[P\left([Z]_{1}^{N-1}\right) P(\right. & \left.Z_{N} \mid[Z]_{1}^{N-1}\right) \\
& \left.\times \log P\left(Z_{N} \mid[Z]_{1}^{N-1}\right)\right] \tag{6}
\end{align*}
$$

The dependence on $[\epsilon]_{1}^{N}$ and M, T is hidden in the probabilities $P(\ldots)$. Since $\epsilon_{j}=0$, we have $X_{j}=Z_{j}$, and conditioning further to the past is "blocked"

$$
\begin{equation*}
\epsilon_{j}=0 \Rightarrow P\left(Z_{N} \mid[Z]_{1}^{N-1}\right)=P\left(Z_{N} \mid[Z]_{j}^{N-1}\right) \tag{7}
\end{equation*}
$$

Substituting in (6) gives

$$
\begin{align*}
F_{N}= & -\sum_{[Z]_{1}^{N}}\left[P\left([Z]_{1}^{N-1}\right) P\left(Z_{N} \mid[Z]_{j}^{N-1}\right)\right. \\
& \left.\times \log P\left(Z_{N} \mid[Z]_{j}^{N-1}\right)\right] \\
= & -\sum_{[Z]_{j}^{N}} P\left([Z]_{j}^{N}\right) \log P\left(Z_{N} \mid[Z]_{j}^{N-1}\right) \\
= & F_{N-j+1} . \tag{8}
\end{align*}
$$

Let $\vec{k}=[k]_{1}^{N}$ be a vector with $k_{i} \in\{\mathbb{N} \cup 0\}$. Define its "weight" as $\omega(\vec{k})=\sum_{i=1}^{N} k_{i}$. Define also

$$
\begin{equation*}
\left.F_{N}^{\vec{k}} \equiv \frac{\partial^{\omega(\vec{k})} F_{N}}{\partial \epsilon_{1}^{k_{1}}, \ldots, \partial \epsilon_{N}^{k_{N}}}\right|_{\vec{\epsilon}=0} \tag{9}
\end{equation*}
$$

$C_{N}^{(k)}$ is obtained by summing the contributions $F_{N}^{\vec{k}}$ of all the vectors \vec{k} 's with weight k

$$
\begin{equation*}
C_{N}^{(k)}=\frac{1}{k!} \sum_{\vec{k}, \omega(\vec{k})=k} F_{N}^{\vec{k}} \tag{10}
\end{equation*}
$$

The next lemma shows that many such \vec{k} 's give zero contribution to the sum.

Lemma 2: Let $\vec{k}=[k]_{1}^{N}$. If $\exists i, j, 1 \leq i<j<N$, with $k_{i} \geq 1, k_{j} \leq 1$, then $F_{N}^{\vec{k}}=0$.

Proof: Assume first $k_{j}=0$. Using lemma 1, we get

$$
\begin{align*}
F_{N}^{\vec{k}} & \left.\equiv \frac{\partial^{\omega(\vec{k})} F_{N}\left([\epsilon]_{1}^{N}\right)}{\partial \epsilon_{1}^{k_{1}}, \ldots, \partial \epsilon_{N}^{k_{N}}}\right|_{\epsilon=0}=\left.\frac{\partial^{\omega(\vec{k})} F_{N-j+1}\left([\epsilon]_{j}^{N}\right)}{\partial \epsilon_{1}^{k_{1}}, \ldots, \partial \epsilon_{N}^{k_{N}}}\right|_{\vec{\epsilon}=0} \\
& =\left.\frac{\partial^{\omega(\vec{k})-1}}{\partial \epsilon_{1}^{k_{1}}, \ldots, \partial \epsilon_{i}^{k_{i}-1}, \ldots, \partial \epsilon_{N}^{k_{N}}}\left[\frac{\partial F_{N-j+1}\left([\epsilon]_{j}^{N}\right)}{\partial \epsilon_{i}}\right]\right|_{\vec{\epsilon}=0} \\
& =0 . \tag{11}
\end{align*}
$$

Assume now $k_{j}=1$. Write the probability of Z

$$
\begin{align*}
P\left([Z]_{1}^{N}\right) & =\sum_{[X]_{1}^{N}} P\left([X]_{1}^{N}\right) P\left([Z]_{1}^{N} \mid[X]_{1}^{N}\right) \\
& =\sum_{[X]_{1}^{N}} P\left([X]_{1}^{N}\right) \prod_{i=1}^{N}\left(\delta_{X_{i} Z_{i}}+\epsilon_{i} t_{X_{i} Z_{i}}\right) . \tag{12}
\end{align*}
$$

Let $[Z]_{1}^{N^{(j \rightarrow a)}}$ denote the vector we get from $[Z]_{1}^{N}$ by changing Z_{j} to a (while keeping other coordinates). Differentiating with respect to ϵ_{j} gives (see [12] for more details)

$$
\begin{align*}
& \left.\frac{\partial P\left([Z]_{1}^{N}\right)}{\partial \epsilon_{j}}\right|_{\epsilon_{j}=0} \\
& \quad=\left.\sum_{[X]_{1}^{N}}\left[P\left([X]_{1}^{N}\right) t_{X_{j} Z_{j}} \prod_{i \neq j}\left(\delta_{X_{i} Z_{i}}+\epsilon_{i} t_{X_{i} Z_{i}}\right)\right]\right|_{\epsilon_{j}=0} \\
& \quad=\left.\left\{\sum_{a=1}^{s} t_{a Z_{j}} P\left([Z]_{1}^{N(j \rightarrow a)}\right)\right\}\right|_{\epsilon_{j}=0} . \tag{13}
\end{align*}
$$

By Bayes' rule $P\left(Z_{N} \mid[Z]_{1}^{N-1}\right)=P\left([Z]_{1}^{N}\right) / P\left([Z]_{1}^{N-1}\right)$, we get

$$
\left.\begin{array}{l}
\left.\frac{\partial P\left(Z_{N} \mid[Z]_{1}^{N-1}\right)}{\partial \epsilon_{j}}\right|_{\epsilon_{j}=0}=\frac{1}{P\left([Z]_{1}^{N-1}\right)} \sum_{a=1}^{s} t_{a Z_{j}} \\
\times\left[P\left([Z]_{1}^{N(j \rightarrow a)}\right)-P\left(Z_{N} \mid[Z]_{1}^{N-1}\right) P\left([Z]_{1}^{N-1}(j \rightarrow a)\right.\right. \tag{14}\\
\end{array}\right]\left.\right|_{\epsilon_{j}=0} .
$$

This gives

$$
\left.\left.\begin{array}{c}
\left.\frac{\partial\left[P\left([Z]_{1}^{N}\right) \log P\left(Z_{N} \mid[Z]_{1}^{N-1}\right)\right]}{\partial \epsilon_{j}}\right|_{\epsilon_{j}=0} \\
=\sum_{a=1}^{s} t_{a Z_{j}}\left\{P\left([Z]_{1}^{N(j \rightarrow a)}\right) \log P\left(Z_{N} \mid[Z]_{1}^{N-1}\right)\right. \\
\quad+P\left([Z]_{1}^{\left.N^{(j \rightarrow a)}\right)-P\left(Z_{N} \mid[Z]_{1}^{N-1}\right)}\right. \\
\times P\left([Z]_{1}^{N-1}(j \rightarrow a)\right. \tag{15}
\end{array}\right)\right\}\left.\right|_{\epsilon_{j}=0} .4 .
$$

and therefore

$$
\begin{align*}
&\left.\frac{\partial F_{N}}{\partial \epsilon_{j}}\right|_{\epsilon_{j}=0}=-\sum_{a=1}^{s} t_{a Z_{j}} \\
& \times\left\{\sum _ { [Z] _ { 1 } ^ { N } } \left[P\left([Z]_{1}^{N(j \rightarrow a)}\right) \log P\left(Z_{N} \mid[Z]_{1}^{N-1}\right)\right.\right. \\
&-P\left(Z_{N} \mid[Z]_{1}^{N-1}\right) \\
&\left.\left.\times P\left([Z]_{1}^{N-1}(j \rightarrow a)\right)\right]\right\}\left.\right|_{\epsilon_{j}=0} \\
&\left.=\left\{\begin{aligned}
&-\sum_{a=1}^{s} t_{a} Z_{j} \\
& \times \sum_{[Z]_{j}^{N}}\left[P\left([Z]_{j}^{N(1 \rightarrow a)}\right) \log P\left(Z_{N} \mid[Z]_{j}^{N-1}\right)\right. \\
&-P\left(Z_{N} \mid[Z]_{j}^{N-1}\right) \\
& \times P\left([Z]_{j}^{N-1}(1 \rightarrow a)\right. \\
&
\end{aligned}\right)\right\}\left.\right|_{\epsilon_{1}=0} .
\end{align*}
$$

The latter equality comes from using (7), which "blocks" the dependence backward. Equation (16) shows that ϵ_{i} does not appear in $\left.\left(\partial F_{N} / \partial \epsilon_{j}\right)\right|_{\epsilon_{j}=0}$ for $i<j$; therefore, $\left.\left(\partial^{k_{i}+1} F_{N} / \partial \epsilon_{i}^{k_{i}} \partial \epsilon_{j}\right)\right|_{\epsilon_{j}=0}=0$ and $F_{N}^{\vec{k}}=0$.

Before proving Theorem 1, we show here that adding zeros to the left of \vec{k} leaves $F_{N}^{\vec{k}}$ unchanged.

Lemma 3: Let $\vec{k}=[k]_{1}^{N}$ with $k_{1} \leq 1$. Denote $\vec{k}^{(r)}$ the concatenation of \vec{k} and r zeros to the left: $\vec{k}^{(r)}=(\underbrace{0, \ldots, 0}_{r}, k_{1}, \ldots, k_{N})$. Then

$$
\begin{equation*}
F_{N}^{\vec{k}}=F_{r+N}^{\vec{k}^{(r)}}, \quad \forall r \in \mathbb{N} \tag{17}
\end{equation*}
$$

Proof: Assume first $k_{1}=0$. Using lemma 1, we get

$$
\begin{align*}
F_{r+N}^{\vec{k}^{(r)}}\left([\epsilon]_{1}^{r+N}\right) & =\left.\frac{\partial^{\omega\left(\vec{k}^{(r)}\right)} F_{r+N}\left([\epsilon]_{1}^{r+N}\right)}{\partial \epsilon_{r+2}^{k_{2}}, \ldots, \partial \epsilon_{r+N}^{k_{N}}}\right|_{\vec{\epsilon}=0} \\
& =\left.\frac{\partial^{\omega(\vec{k})} F_{N}\left([\epsilon]_{r+1}^{r+N}\right)}{\partial \epsilon_{r+2}^{k_{2}}, \ldots, \partial \epsilon_{r+N}^{k_{N}}}\right|_{\vec{\epsilon}=0} \\
& =F_{N}^{\vec{k}}\left([\epsilon]_{r+1}^{r+N}\right) \tag{18}
\end{align*}
$$

The case $k_{1}=1$ is reduced back to the case $k_{1}=0$ by taking the derivative. Using (16) and (18), we get

$$
\begin{align*}
& F_{N+1}^{\vec{k}^{(1)}}\left([\epsilon]_{1}^{N+1}\right) \\
&=\left.\frac{\partial^{\omega(\vec{k})-1}}{\partial \epsilon_{3}^{k_{2}} \ldots \partial \epsilon_{N+1}^{k_{N}}}\left[\left.\frac{\partial F_{N+1}}{\partial \epsilon_{2}}\right|_{\epsilon_{2}=0}\right]\right|_{\vec{\epsilon}=0} \\
&= \frac{\partial^{\omega(\vec{k})-1}}{\partial \epsilon_{3}^{k_{2}} \ldots \partial \epsilon_{N+1}^{k_{N}}} \\
& \times\left\{-\sum_{a=1}^{s} t_{a Z_{2}}\right. \\
& \times \sum_{[Z]_{1}^{N+1}}\left[P \left([Z]_{1}^{N+1}(2 \rightarrow a)\right.\right. \\
& \quad-P\left(Z_{N+1} \mid[Z]_{1}^{N}\right) \log P\left(Z_{N+1} \mid[Z]_{1}^{N}\right) \\
&= \frac{\partial^{\omega(\vec{k})-1}}{\partial \epsilon_{2}^{k_{2}} \ldots \partial \epsilon_{N}^{k_{N}}} \\
& \times\left\{-\sum_{a=1}^{s} t_{a Z_{2}}\right. \\
&\left.\times\left.\sum_{[Z]_{1}^{N(2 \rightarrow a)}}\left[P\left([Z]_{1}^{N(1 \rightarrow a)}\right)\right]\right|_{\epsilon_{2}=0}\right\}\left.\right|_{[\epsilon]_{1}^{N+1}=0} \\
& \quad-P\left(Z_{N} \mid[Z]_{1}^{N-1}\right) \\
&\left.\left.\times P\left([Z]_{1}^{N(1 \rightarrow a)}\right)\right]\left.\right|_{\epsilon_{1}=0}\right\}\left.\right|_{[\epsilon]_{1}^{N}=0} \\
&= F_{N}^{\vec{k}}\left([\epsilon]_{1}^{N}\right)
\end{align*}
$$

This proved the claim for $r=1$. The claim for larger r 's follows by induction.

We are now ready to prove our main theorem, which follows directly from lemmas 2 and 3.

Proof (Theorem 1): Let $\vec{k}=[k]_{1}^{N}$ with $\omega(\vec{k})=k$. Define its "length" as $l(\vec{k})=N+1-\min _{k_{i}>1}\{i\}$. It easily follows from lemma 2 that $F_{N}^{\vec{k}} \neq 0 \Rightarrow l(\vec{k}) \leq\lceil(k+3) / 2\rceil-1$. Thus, according to lemma 3 , we have

$$
\begin{equation*}
F_{N}^{\vec{k}}=F_{\left\lceil\frac{k+3}{2}\right\rceil}^{\left(k_{N-\left\lceil\frac{k+3}{2}\right\rceil+1}, \ldots, k_{N}\right)} \tag{20}
\end{equation*}
$$

for all \vec{k} 's in the sum. Summing over all $F_{N}^{\vec{k}}$ with the same "weight" gives $C_{N}^{(k)}=C_{\lceil(k+3) / 2\rceil}^{(k)}, \forall N>\lceil(k+3) / 2\rceil$. However, from the analyticity of C_{N} and \bar{H} near $\epsilon=0$, it can be shown by induction that $\lim _{N \rightarrow \infty} C_{N}^{(k)}=C^{(k)}$; therefore, $C_{N}^{(k)}=C^{(k)}, \forall N \geq\lceil(k+3) / 2\rceil$.

III. CONCLUSION

The theorem proven above sheds light on the connection between finite and infinite chains and gives a practical and straightforward way to compute the entropy rate as a series expansion in ϵ up to an arbitrary power. The surprising "settling" of the
expansion coefficients $C_{N}^{(k)}=C^{(k)}$ for $N \geq\lceil(k+3) / 2\rceil$ holds for the entropy. For other functions involving only conditional probabilities (e.g., relative entropy between two HMPs), a weaker result holds: the coefficients "settle" for $N \geq k+2$. One can expand the entropy rate in several parameter regimes. As it turns out, exactly the same "settling" as was proven in Theorem 1 happens in the "almost memoryless" regime, where the transition matrix M is close to a matrix, which makes the X_{i} 's i.i.d, (i.e., a matrix whose rows are identical). This and other regimes, as well as the analytic behavior of the HMP [9], will be discussed elsewhere.

ACKNOWLEDGMENT

M. Aizenman would like to thank the Weizmann Institute for the hospitality shown him.

REFERENCES

[1] L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," Proc. IEEE, vol. 77, no. 2, pp. 257-286, Feb. 1989.
[2] Y. Ephraim and N. Merhav, "Hidden Markov processes," IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1518-1569, Jun. 2002.
[3] M. Crouse, R. Nowak, and R. Baraniuk, "Wavelet-based statistical signal processing using hidden Markov models," IEEE Tran. Signal Process., vol. 46, no. 4, pp. 886-902, Apr. 1998.
[4] C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J., vol. 27, pp. 379-423 (part1) and pp. 623-656 (part 2), 1948.
[5] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.
[6] P. Jacquet, G. Seroussi, and W. Szpankowski, "On the entropy of a hidden Markov process," in Proc. Data Computation Conf., Snowbird, UT, 2004, pp. 362-371.
[7] E. Ordentlich and T. Weissman, "New bounds on the entropy rate of hidden Markov processes," in Proc. San Antonio Information Theory Workshop, 2004.
[8] O. Zuk, I. Kanter, and E. Domany, "Asymptotics of the entropy rate for a hidden Markov process," in Proc. Data Computation Conf., Snowbird, UT, 2005, pp. 173-182.
[9] G. Han and B. Marcus, "Analyticity of entropy rate in families of hidden Markov chains," IEEE Tran. Inf. Theory, submitted for publication.
[10] J. Lorinczi, C. Maes, and K. Vande Velde, "Transformations of Gibbs measures," Prob. Theory Related Fields, vol. 112, pp. 121-147, 1998.
[11] R. L. Dobrushin and S. B. Shlosman, "Completely analytical interactions: constructive description," J. Stat. Phys., vol. 46, no. 5-6, pp. 983-1014, 1987.
[12] O. Zuk, I. Kanter, E. Domany, and M. Aizenman, "Taylor series expansions for the entropy rate of hidden Markov processes," in Proc. IEEE Int. Conf. Communication, Istanbul, Turkey, 2006, accepted for publication.

[^0]: Manuscript received January 4, 2006; revised January 23, 2006. The work of M. Aizenman was supported in part by the Einstein Center for Theoretical Physics and in part by the Minerva Center for Nonlinear Physics. The work of I. Kanter at the Weizmann Institute was supported by the Einstein Center for Theoretical Physics. E. Domany and O. Zuk were supported in part by the Minerva Foundation and in part by the European Community's Human Potential Programme under Contract HPRN-CT-2002-00319, STIPCO. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Cihan Tepedelenlioglu.
 O. Zuk and E. Domany are with the Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel (e-mail: or.zuk@weizmann.ac.il; eytan.domanyweizmann.ac.il).
 I. Kanter is with the Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.
 M. Aizenman is with the Departments of Physics and Mathematics, Princeton University, Princeton, NJ 08544-0708 USA.

 Digital Object Identifier 10.1109/LSP.2006.874466

