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Abstract—We propose Sparse Clustering with Wavelets (SPARCWave)
- a simple and efficient time-series clustering method particularly suited
for low Signal-to-Noise Ratio (SNR) by a “built-in” shrinkage of wavelet
coefficients based on their contribution to the clustering information. We
also use group sparsity constraints to cluster multivariate signals.

I. BACKGROUND AND PREVIOUS WORK

Clustering of high-dimensional signals, sequences or functional
data is a common task arising in many domains [1]. Clustering
is often based on the pairwise distances between signals - but in
the low Signal-to-Noise Ratio (SNR) scenario these distances may
be unreliable. An apparent solution is to first smooth each signal,
independently of the others – but, as we show, this may be sub-
optimal as potentially important clustering information could be lost
when noise is high.

Representing signals in the wavelet domain can be useful for
clustering them. Giacofci et al. [2] first perform wavelets-based
denoising for each signal, and then use model-based clustering on
the union set of non-zero coefficients after shrinkage. However,
informative features can be thresholded by single-signal denoising
due to the lack of global information highlighting their importance
(See Figure 1). Antoniadis [3] proposed extracting features repre-
senting the contribution of each wavelet scale j ∈ {1, . . . , J} to the
total energy of the signal. Here too, low SNR can lead to loss of
informative features.

We combine the Discrete Wavelet Transform (DWT) and Sparse
K-means [4], by formulating and optimizing the Sparse K-means
objective in the wavelet domain. This leads to shrinkage which (i)
uses “global” cross-signal information, and (ii) is geared towards
preserving clustering information (rather than the signal for individual
curves – see Figure 2). The method is shown to yield improved clus-
tering performance, compared to methods available in the literature,
in simulations on both univariate and multivariate signals.

Fig. 1: Simulated cluster data. True cluster centers (Left) : (a) Flat curve, (b)
Heavisine, (c) Blocks, (d) Bumps, (e) Doppler, (f) Piecewise polynomial, and actual
noisy data sampled from each cluster with additive Gaussian noise (Right). SNR is too
low to allow individual curve smoothing to reliably estimate cluster centers.

II. METHODS

A. Sparse Clustering with Wavelets – Univariate Signals

Consider n instances (signal vectors) x(i) ∈ RT , and let v(i)

be their DWT transforms. Let di1,i2,j be the squared (Euclidean)
distance between v(i1) and v(i2) over coordinate j, di1,i2,j ≡

(v
(i1)
j −v(i2)

j )2. Let Ck be the set of indices corresponding to cluster
k with |Ck| = nk. Finally, let w be a vector of weights, and s a
tuning parameter bounding ‖w‖1. We get the following Sparse K-
means constrained optimization problem, where sparsity is promoted
in the wavelet domain:
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subject to ‖w‖22 ≤ 1, ‖w‖1 ≤ s, wj ≥ 0 ∀j = 1, .., n
(1)

The objective function is a decomposition of the weighted
Between-Cluster-Sum-of-Squares (BCSS) into a sum over each coor-
dinate j. For signals having good sparse approximation in the wavelet
domain, we expect that clustering information will also be localized to
a few wavelets coefficients, with high fitted weights wj corresponding
to informative coefficients (See Figure 2).

B. Tuning parameter selection

In [4], the parameter s is chosen with a permutation-based “Gap
Statistic” method. This method may not be suitable when the number
of instances is relatively low, as often occurs in the case of functional
data, and tends to leave weights w arbitrarily small but non-zero [6].
We tried two additional approaches. First, we simply run the “Gap
Statistic” method, and select the features corresponding to the top
qth percentile of weights w (e.g. q = 99%). We also developed the
following method to select s. Start with small s0 ≥ 1, solve eq. (1),
and record the number of non-zero weights ω0 = ‖w‖0. Gradually
increase s by a fixed ε > 0, si+1 ≡ si + ε and repeat until s is large
enough such that either ‖w‖0 = T (i.e. all features are selected) or
the l1 constraint ‖w‖1 ≤ s is guaranteed to be satisfied (s =

√
T )

yielding an array {ω0, ω1, . . .}. Compute the ratios ωi+1

ωi
, find imax =

argmax
i

ωi+1

ωi
, and select s = simax . In words, we watch for the “largest

jump” in the number of selected features, and take the largest s before
this jump. Finally, in both approaches we use the selected features in
standard K-means, ignoring their weights – we select features with
Sparse K-means, and then use them for “unbiased” clustering. Both
our methods resulted in improved accuracy in simulations.

C. Clustering Multivariate Signals with Group Sparsity

In many cases, each instance is actually a multivariate signal
X(i) ∈ RG×T where G is the number of variables and T is as
above (See Figure 4). We use a direct generalization of our method
for univariate signals. We transform each row of X(i) with DWT to
get V(i), and use di1,i2,j ≡

∑G
g=1(V

(i1)
g,j −V

(i1)
g,j )2. These di1,i2,j

values are used in solving (1) as in the single-curve case, yielding a
distance which is still decomposable over j. This problem formulation
(termed SPARCWave Group) yields group sparsity penalties as a
by-product: It is equivalent to concatenating the rows of each V(i)

into one vector of length G × T and solving a univariate problem
with the additional constraints that wi = wi+T = . . . = wi+GT .
We also applied the concatenation approach without group sparsity
(termed SPARCWave Concat), yet group sparsity improved results
(See Figure 5).



III. SIMULATION RESULTS

For univariate signals, we take curves of dimension 256 from [5]
(using the waveband R package) and pad them with 128 zeros on
both ends resulting in 6 cluster centers with T = 512 (see Figure
1). We apply additive Gaussian noise N(0, σ2) to generate individual
signals. Signals are clustered using K-means (picking the best of 100
starts), Sparse K-means on the raw data as in [4], and the methods of
[2] (using the curvclust R package) and [3] (See Figure 3). We use
the Adjusted Rand Index as a measure of clustering accuracy [7].

For multivariate signals, we select univariate curves as depicted in
Figure 4, with each univariate signal of dimension 128 padded with
64 zeros on each end, resulting in 5 cluster centers with G = 3, T =
256. We compare our method to K-means and Sparse K-means on
the concatenated data, to a Hidden Markov Model approach in [8]
and use the multivariate PCA-similarity measure [9] to construct a
pairwise distance matrix, which we use in spectral clustering [10].

Fig. 2: SPARCWave selected wavelet coefficients. Wavelet coefficients for the
univariate curves from Figure 1 (excluding the trivial flat curve) in blue, and the
SPARCWave clustering weights (with noise level σ = 2.5) in green. Wavelet coefficients
in each curve are ordered from the finest (left) to the coarsest level (right). Although a few
wavelet coefficients at fine resolution are large for some of the curves, the informative
coefficients for clustering are all at the coarsest levels.

Fig. 3: Univariate simulation results. Average Adjusted Rand Index as a function
of number of signals over 2000 simulations, for the simulation described in text with
σ = 2.75 and clusters of equal size. Both K-means, which does not exploit sparsity, and
Sparse K-means in the time domain, show inferior accuracy compared to SPARCWave.
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