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Abstract

We propose a simple and efficient time-series

clustering framework particularly suited for

low Signal-to-Noise Ratio (SNR), by simul-

taneous smoothing and dimensionality reduc-

tion aimed at preserving clustering informa-

tion. We extend the sparse K-means algo-

rithm by incorporating structured sparsity,

and use it to exploit the multi-scale property

of wavelets and group structure in multivari-

ate signals. Finally, we extract features in-

variant to translation and scaling with the

scattering transform, which corresponds to a

convolutional network with filters given by

a wavelet operator, and use the network’s

structure in sparse clustering. By promot-

ing sparsity, this transform can yield a low-

dimensional representation of signals that

gives improved clustering results on several

real datasets.

1 Introduction

Clustering of high-dimensional signals, sequences or

functional data is a common task that arises in many

domains [18, 19]. Such data come up in diverse fields,

as in speech analysis, genomics, mass spectrometry,

MRI or EEG measurements, and many more.

Clustering seeks to partition data into groups with

high overall similarity between members (instances)
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of the same group and dissimilarity to members of

other groups. For time-series signals, this means parti-

tioning the instances into groups of similarly behaving

functions over time, where the measure of similarity is

crucial and often application-specific.

In many real-world scenarios, signals are high-

dimensional (such as in genomics), noisy (as in low-

quality speech recordings), and exhibit non-stationary

behavior: for example peaks and other non-smooth

local patterns, or changes in frequency over time. In

addition, signals are often subject to translations, di-

lations and deformations. These properties generally

make clustering difficult.

Clustering is often based on the pairwise distances be-

tween signals - but in the low Signal-to-Noise Ratio

(SNR) scenario these distances may be unreliable. An

apparent solution is to first smooth each signal, inde-

pendently of the others - but this may be sub-optimal

as potentially important clustering information could

be lost when noise is too high (see Figure 1). In addi-

tion, typical feature representations and distance mea-

sures are not invariant to the kind of transformations

that occur to real-world signals, such as translations.

Our contributions. We introduce SPARCWave –

Sparse Clustering with Wavelets – a framework of

methods for sparse clustering of noisy signals, which

(i) uses “global” cross-signal information for smooth-

ing and dimensionality reduction simultaneously, by

sparse clustering using time-frequency representation,

(ii) is geared towards preserving clustering informa-

tion (rather than individual signals – see Figure 1),

(iii) exploits structure in the signal representation,

such as multi-scale properties in univariate signals

and interdependencies in multivariate signals, and (iv)
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uses the scattering transform [1, 6, 7], that generates

features invariant to translations and dilations and ro-

bust to small deformations in both time and frequency.

We use the natural structure in the scattering coeffi-

cients in our sparse clustering method.

Our methods achieve higher clustering accuracy, com-

pared to methods available in the literature, in simula-

tions on both univariate and multivariate signals, and

on real-world datasets from different domains. We im-

plemented our algorithms and simulations in a python

software package “SPARCWave” available in the supp.

info., and which will be uploaded to github.

2 Related Work

Much work has been done both recently and in the

past on using time-frequency representation of signals

to cluster them, primarily with wavelets. Giacofci

et al. [14] first perform wavelets-based denoising for

each signal, and then use model-based clustering on

the union set of non-zero coefficients after shrinkage.

However, informative features can be thresholded by

single-signal denoising due to the lack of global infor-

mation highlighting their importance (See Figure 1).

Antoniadis et al. [2] use the fact that the overall en-

ergy of a signal x ∈ RT can be decomposed into a

multi-scale view of the energy, and propose extract-

ing features that involve averaging wavelet coefficients

in each scale and measuring each scale’s relative im-

portance. The averaging of all wavelets at the same

scale in [2] increases SNR and makes the method ro-

bust to translations. However, this averaging loses the

time information: two different signals with the same

power spectrum will have very similar v(j) coefficients,

which may lead to clustering errors.

Non-rigid transformation are typically present for real

world signals, making the computed pairwise distances

between signals unreliable if these are not taken into

account. A common approach to dealing with de-

formations is the Dynamic Time Warping approach

(DTW) [5], which uses dynamic programming to align

pairs of signals. However, usage of DTW for our prob-

lem is limited by the fact that SNR is typically too

low, such that two individual signals do not contain

enough information in order to reliably align them. In

our simulations and real-data applications, we did not

obtain satisfactory results with DTW.

2.1 Sparse Clustering

Several methods for sparse clustering have recently

been proposed. For example, in [3] the authors

consider a two-component Gaussian Mixture Model

(GMM), and provide an efficient sparse estimation

method with theoretical guarantees. While our

approach could make use of any sparse clustering

method, we chose sparse K-means [26] for its simplicity

and ease of implementation. This simplicity allowed

us to more readily incorporate our extensions to struc-

tured sparsity for both univariate and multivariate sig-

nals. We use rich feature representations, and hope for

linear cluster separability in this feature space. By us-

ing these representations, we are able to achieve good

results with the simpler (sparse) K-means, which cor-

responds to assuming a spherical GMM.

3 Methods

We first provide a brief description of wavelets. Next,

we introduce our SPARCWave methods - using sparse

K-means in the wavelet domain, incorporating group

structure for univariate and multivariate signals, and

finally applying the scattering transform to obtain

transformation-invariant features.

3.1 Wavelets Background

Wavelets are smooth and quickly vanishing oscillat-

ing functions, often used to represent data such as

curves/signals in time. More formally, a wavelet fam-

ily Ψj,k is a set of functions generated by dilations and

translations of a unique mother wavelet Ψ:

Ψj,k(t) = a
j
2 Ψ(ajt− k), (1)

where j, k ∈ Z and a > 0. The constant a represents

resolution in frequency, j represents scale and k trans-

lations. We similarly define a family of functions φ0,k

derived from a scaling function φ(t) by using the dila-

tion and translation formulation given in eq. (1).

Any function f ∈ L2(R) can then be decomposed in
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Figure 1: Simulated cluster data and SPARCWave’s cross-signal smoothing and dimensionality reduction. Clustering results

for six clusters (I - V I): Flat curve, Heavisine, Blocks, Bumps, Doppler, Piecewise Polynomial. We generated each individual signal by

applying additive Gaussian noise with σ = 2.5. There are 30 signals for each cluster. We ran SPARCWave as described in the text. (a)

True cluster centers. (b) One individual curve from each cluster. SNR is too low to allow individual curve smoothing to reliably estimate

cluster centers. (c) Cluster centers returned by SPARCWave resemble the original clusters (d) Wavelet smoothing of returned cluster centers

improves estimation of original cluster centers. (e) Wavelet coefficients for each true cluster center from II.−V I. (except for the trivial flat

curve) are ordered from the finest (left) to the coarsest level (right), shown in green. The wi coefficients fitted in SPARCWave are shown

in red. Although a few wavelet coefficients at fine resolutions are large for some of the curves, the informative coefficients for clustering are

all at the coarsest levels.

terms of these functions:

f(t) =
∑
k∈Z

ckφ0,k(t) +
∑
j,k∈Z

vj,kΨj,k(t), (2)

where ck = 〈φ0,k(t), f(t)〉 are the scaling coefficients,

and vj,k = 〈Ψj,k(t), f(t)〉 are called the wavelet coeffi-

cients of f(t).

This decomposition has a discrete version known as the

Discrete Wavelet Transform (DWT). Given x1, . . . , xT

forming a signal x ∈ RT sampled at times t = 1, .., T ,

where T = 2J , and taking a = 2, the DWT of x is given

by taking c0 and vj,k for j = 0, .., J−1 and k = 0, .., 2j

in eq. (2), where φ0,0,Ψj,k are evaluated at t = 1, .., T

to compute the (discrete) inner products 〈φ0,0,x〉 and

〈Ψj,k,x〉. The DWT can be written conveniently in

a matrix form v = Wx where W is an orthogonal

matrix defined by the chosen Ψ, φ, and v is the vector

of coefficients c0,Ψj,k properly ordered.

Many real-world signals are approximately sparse in

the wavelet domain. This property is typically used

for signal denoising using a three-step procedure [10]:

x̂ ≡W−1ηλ(Wx) (3)

where ηλ is a nonlinear shrinkage (smoothing) oper-

ator, for example entry-wise soft-threshold operator

with parameter λ: ηλ(v) = sgn(v)(|v| − λ)+.

3.2 Sparse Clustering with Wavelets –

Univariate Signals

Consider n instances (signal vectors) x(i) ∈ RT , and

let v(i) be their DWT transforms. Let di1,i2,j be the

squared (Euclidean) distance between v(i1) and v(i2)

over coordinate j, di1,i2,j ≡ (v
(i1)
j − v

(i2)
j )2. Let Ck

be the set of indices corresponding to cluster k with

|Ck| = nk. In standard K-means clustering, the goal

is to maximize the Between Cluster Sum of Squares

(BCSS), which can be represented as a a sum 1TD
where D is a vector representing the contribution of

the wavelet coefficient j to the BCSS, with

Dj ≡
1

n

n∑
i1,i2=1

di1,i2,j −
K∑
k=1

1

nk

∑
i1,i2∈Ck

di1,i2,j . (4)

Let w ∈ RT be a vector of weights, and s a tuning pa-

rameter bounding ‖w‖1. In sparse K-means we max-

imize a weighted sum of the contribution from each
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coordinate, wTD [26]. We get the following sparse K-

means [26] constrained optimization problem, where

sparsity is promoted in the wavelet domain:

argmax
C1,C2,...Ck,w

wTD

s.t. w ∈ B2(0, 1) ∩ B1(0, s) ∩ RT+
(5)

where Bp(0, r) ∈ RT is the Lp ball centered at zero

with radius r, and RT+ is the positive orthant, RT+ ≡
{w ∈ RT , wj ≥ 0,∀j = 1, .., T}.

For signals having good sparse approximation in the

wavelet domain, we expect that clustering informa-

tion will also be localized to a few wavelet coefficients,

where high wj values correspond to informative coef-

ficients (See Figure 1). In [26] the authors propose

an iterative algorithm for solving Problem (5), where

each iteration consists of updating the clusters Cj by

running K-means, and updating w with a closed-form

expression. The tuning parameter s is set by the

permutation-based Gap Statistic method [24].

3.3 Group Sparse Clustering

In many cases, the features upon which we cluster

could have a natural structure. A common example

that has seen much interest is group structure, where

features come in groups (blocks of pixels in images,

neighboring genes, etc.).

Exploiting structured sparsity has been shown to be

beneficial in the context of supervised learning (regres-

sion, classification), compressed sensing and signal re-

construction [4, 17]. Here, we extend the idea of using

group sparsity to clustering, and propose the following

Group-Sparse K-means.

Let G be a partition of {1, .., T} and denote by v(g) the

elements of w corresponding to group g ∈ G. Let |g|
the number of elements in g. Define the group-norm

with respect to the partition G [4],

||v||G ≡
∑
g∈G

√
|g|||v(g)||2 (6)

where we multiply the vector norms ||v(g)||2 by
√
|g|

as in [8] and [11], to give greater penalties to larger

groups (other coefficients may also be used).

Using the group norm, we define the group-sparse K-

means problem, where the tuning-parameter s controls

group sparsity, with B(G)(0, s) the ball of radius s cen-

tered at zero with respect to the group norm || · ||G .

argmax
C1,C2,...CK ,w

wTD

s.t. w ∈ B2(0, 1) ∩ B(G)(0, s) ∩ RT+
(7)

Problem (7) generalizes the sparse K-means problem

in eq. (5), which is obtained here by setting all groups

to have size 1.

Problem (7) can be solved iteratively as shown in Algo-

rithm 1. (
√
· and � in step (a.) represent element-wise

vector operations: [
√

w]j =
√
wj and [w�v]j = wjvj).

Optimization w.r.t w can be done with standard Sec-

ond Order Cone Programming (SOCP) solvers by in-

troducing auxiliary variables. We used the convex op-

timization toolbox CVX [15].

Algorithm 1 Group-Sparse K-means

Input: v(1),v(2), ...,v(n), K, iters, G, s
Output: Clusters C1, C2, ..., CK

1. Initialize: Set w1 = w2 = ... = wT = 1√
T

2. for i=1 : iters

(a) Apply K-means on
√

w� v(1), ...,
√

w� v(n)

(b) Hold C1, ..., CK fixed, solve (7) w.r.t w, with
tuning parameter s and partition G

3. Return C1, ..., CK

We next show two applications of group-sparse cluster-

ing in the wavelets domain: (i.) using group sparsity to

exploit structure of the wavelet coefficients, and (ii.)

using group sparsity to exploit correlations between

different curves in multivariate signal clustering.

3.3.1 Exploiting Structure of Wavelet

Coefficients using Group Sparsity

In our time-series clustering context, each scale g of

the wavelets coefficients can be thought of as a group,

together forming a multi-scale view of the signal. Since

the elements of each group represent “similar” infor-

mation about individual signals, it is natural to expect

that they also express similar information with respect

to the clustering task. Therefore, we define the parti-
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(a) (b) (c) (d) (e)

Figure 2: Multivariate cluster data. Each column (color) is

a multivariate cluster center with G variables (here G = 3). Each

instance is X(i) ∈ RG×T , with Gaussian additive noise added to

each cluster center.

tions G =
{
gj = {w2j , ..., w2j+1−1}, j = 0, .. log2(T )

}
with |gj | = 2j , and solve Problem (7) with the group

norm defined by G.

Our choice of G in this work is not the only one possi-

ble exploiting the structure of the wavelets coefficients

tree - for example, one may also choose groups corre-

sponding to connected sub-trees (particular nodes and

all of their descendent in the tree). Finally, by allowing

partitions G with group overlaps, it is possible to get

a richer structure for wavelet coefficients, for example

by using tree-structured sparsity as in [8].

3.3.2 Clustering Multivariate Signals with

Group Sparsity

In contrast to the univariate signals discussed so far, in

many cases signals are multivariate, and are composed

of groups of univariate signals. A simple adaptation

of group sparsity enables us to make use of this mul-

tivariate structure too.

Let each instance X(i) be a multivariate signal, rep-

resented as a matrix X(i) ∈ RG×T where G is the

number of variables and T as above (See Figure 2).

We transform each row of X(i) with DWT to get

V(i). We then concatenate the rows of each V(i)

into one vector of length G × T and solve Problem

(7) with the group norm G defined by G =
{
gt =

{t, t+ T , . . . , t+GT}, t = 1, .., T
}

. Each group corre-

sponds to a “vertical time-frequency slice” across the

G univariate signals comprising X(i).

Intuitively, this structure reflects the prior assumption

that if at some point t on the time-frequency axis we

have an “active clustering feature”, then we expect it

to be active across all G univariate signals compris-

ing each X(i), but also enables flexibility by allowing

{wt, wt+T , . . . , wt+GT } to be different.

3.4 The Scattering Transform

The wavelet transform is not invariant to translations

and scaling. In addition, while the coarse-grain coef-

ficients are stable under small deformations, the fine

resolution coefficients are unstable [20].

To overcome the effects of the above transformations

we use the scattering transform [20], a recent exten-

sion of wavelets which is stable to such deformations.

The scattering representation of a signal is built with

a non-linear, unitary transform computed in a manner

resembling a deep convolutional network where filter

coefficients are given by a wavelet operator [1].

More formally, a cascade of three operators - wavelet

decomposition, complex modulus, and local averaging

- is used as follows. For a function f(t) the 0-th scat-

tering layer is obtained by a convolution,

S(0) ≡ f ? φ (8)

where f ? g(t) ≡
∫∞
s=−∞ f(s)g(t − s)ds and φ is an

averaging filter. Applying the filter φ provides some

local translation-invariance but loses high frequency

information - this information is kept by an additional

convolution with a wavelet transform described next.

We start by constructing the filters we use in layer 1.

Let {Ψ(1)
j1
}j1∈J1 be a filter-bank containing different

dilations of a complex mother wavelet function Ψ for

a set of indices J1, with Ψ
(1)
j1

(t) = aj11 Ψ(aj11 t).

To regain translation invariance lost by applying Ψ
(1)
j1

,

we perform an additional convolution step with φ and

obtain the scattering functions of the first layer:

S
(1)
j1
≡ |f ?Ψ

(1)
j1
| ? φ, ∀j1 ∈ J1 (9)

where the absolute value | · | is a contraction operator

- this operator reduces pairwise distances between sig-

nals, and prevents explosion of the energy propagated

to deeper scattering layers [20].
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To recover the high frequencies lost by averaging, we

again take convolutions of |x?Ψ
(1)
j1
|, with Ψ

(2)
j2

for some

j2 ∈ J2. More generally, define Ψ
(l)
jl

(t) = ajll Ψ(ajll t)

where al determines the dilation frequency resolution

at layer l. For a scattering layer l, let (j1, .., jl) define a

scale path along the scattering network. This process

above continues in the same way, with the scattering

functions at the l-th layer given by

S
(l)
j1,..,jl

≡ |..||f ?Ψ
(1)
j1
| ?Ψ

(2)
j2
| ?Ψ

(3)
j3
|?, ..., ?Ψ(l)

jl
| ? φ,

∀(j1, .., jl) ∈ J1 × J2 × ..× Jl. (10)

The corresponding scattering coefficients v
(l)
j1,..,jl

(t) are

obtained by evaluating S
(l)
j1,..,jl

at time t.

In practice, we let a resolution parameter ∆t deter-

mine the points at which we evaluate S
(l)
j1,..,jl

, where

for each S
(L)
j1,..,jl

we only sample at points t = k∆t

2 with

k = 0, . . . , d 2T
∆t
e. We stop the process when reaching

the final scattering layer L, obtaining scattering coef-

ficients in layers l = 0, 1, .., L.

We empirically found that in many cases the scattering

transform can give a sparse representation of signals,

and that this sparsity helps in the clustering task (see

Section 5 for real-data results).

3.4.1 Exploiting Scattering Group Structure

The scattering coefficients have a natural group struc-

ture which we exploit in our clustering. For each func-

tion S
(l)
j1,..,jl

, we group all coefficients resulting from the

evaluation of this function. We thus solve Problem (7)

with the following definition of groups:

G =
{
gj1,...,jl ,∀l = 0, .., L, ∀(j1, ..., jl) ∈ J1 × ..× Jl

}
(11)

where

gj1,j2,...,jl =
{
v

(l)
j1,...,jl

(
k∆t

2
) : k = 0, . . . , d2T

∆t
e
}

(12)

4 Simulation Results

For univariate signals, we take curves of dimension 256

from [10] (using the waveband R package) and pad

them with 128 zeros on both ends resulting in K = 6

cluster centers with T = 512 (see Figure 1). Clusters

are uniformly sized. We apply independent additive

Gaussian noise N(0, σ2) to generate individual signals.

We clustered signals using K-means (picking the best

of 100 random starts), sparse K-means on the raw data

as in [26] (with the sparcl R package, best of 100 ran-

dom starts, selecting s using the gap statistic method),

and the methods of [14] (using the curvclust R package

with burn-in period of 100) and [2] (using code pro-

vided by the authors). For our group-sparse K-means

we used CVXPY [9], with tuning parameter s selected

with the gap statistic method. In all relevant cases,

we used the Symmlet-8 wavelet. We used the Adjusted

Rand Index (ARI) as a measure of clustering accuracy

[25]. Results are shown in Figure 3.

Group sparsity improved accuracy substantially when

the number of curves n is particularly low (and thus

so is SNR). When n grows, the more flexible method

that does not impose group constraints picks up and

the two methods reach about the same accuracy.

Figure 3: Univariate simulation results. Average ARI as a

function of number of signals over 1000 simulations, for the simula-

tion described in text with σ = 2.75

For multivariate signals, we select curves as depicted

in Figure 2. Each univariate signal is of dimension 128

padded with 64 zeros on each end, resulting in K = 5

cluster centers with G = 3, T = 256. We evaluated

Group-Sparse K-means and sparse K-means applied

to a concatenation of all signals (termed SPARCWave-

Concat). We compared our methods to (i) K-means,

(ii) sparse K-means on the concatenated data, (iii) a
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Hidden Markov Model approach in [13] (HMM) (code

provided by the authors), and (iv) a multivariate PCA-

similarity measure [27] to construct a pairwise distance

matrix, which we use in spectral clustering [21] (PCA)

(self-implementation).

Group sparsity improved clustering accuracy substan-

tially, especially for low n.

Figure 4: Multivariate simulation results. The average ARI

is shown as a function of number of signals over 1000 simulations,

for the simulation described in text with σ = 1.75.

5 Real-Data Applications

We tested the SPARCWave framework on three real-

world datasets. In all cases, using the scattering trans-

form improved clustering accuracy. We used the imple-

mentation in the scatnet MATLAB software (available

at http://www.di.ens.fr/data/software/). In all

cases, we used complex Morelet wavelets for all scat-

tering layers and a moving average for φ. See the

Appendix for specific parameters used in our imple-

mentations. Results for the different methods on all

datasets are shown in Table 1.

5.1 Berkeley Growth Study

The Berkeley growth dataset [22] consists of height

measurements for 54 girls and 38 boys between the

ages of 1 and 18 years giving T = 30 data points for

each signal. Of interest to researchers is the “velocity”

of the growth curve, i.e. the rate of change. We thus

use first-order differences of the curves. However, as a

result of time shifts among individuals, simply looking

at the cross-sectional mean fails to capture important

common growth [23], which is also not fully captured

by the standard wavelet transform. We applied the

scattering transform together with sparse clustering,

which lead to substantial improvements in accuracy.

Applying sparse K-means on the scattering features

led to the about the same results as ordinary K-means

in this feature space, with ARI = 0.87).

The weights wj selected in the optimization problems

(5) or (7) may be sub-optimal for clustering. The fea-

tures with high-magnitude coefficients can, however,

be used in standard K-means, viewing SPARCWave

as a feature-selection step [26]. We can select all non-

zero features wj (or above some threshold) and apply

K-means using only these features. This technique im-

proved accuracy from 0.87 to 0.91.

Group-sparse clustering with the scattering transform

lead to similar results, possibly due to the very short

signal length T (see Table 1 and Figure 5).

5.2 Phoneme log-periodograms

The Phoneme dataset contains 4507 noisy log-

periodograms corresponding to recordings of speakers

of 32 ms duration with T = 256. There are

K = 5 phonemes: ”sh” (800 instances), ”dcl”

(757), ”iy” (1163), ”aa” (695), ”ao” (1022) (See

[16] and http://statweb.stanford.edu/~tibs/

ElemStatLearn/datasets/phoneme.info.txt).

Each instance is a noisy estimate of a spectral-density

function. De-noising, as suggested for example in [12],

is thus attractive here. By applying the scattering

transform on data in the log-frequency domain, we

obtain invariance to translation in log-frequency and

consequently to scaling in frequency. This is similar

to the approach taken in [1], where the scattering

transform is applied to log-frequencies. Here too

group-sparse clustering did not change accuracy,

possibly due to large sample size (see Table 1 and

Figure 7 in the Appendix).

5.3 Wheat Spectra

The Wheat dataset consists of near-infrared re-

flectance spectra of 100 wheat samples with T = 701,

measured in 2nm intervals from 1100 to 2500nm, and

an associated response variable, the samples’ moisture

http://www.di.ens.fr/data/software/
http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/phoneme.info.txt
http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/phoneme.info.txt
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Figure 5: Clustering results for Berkeley Growth dataset. (a) Fanplots showing the distribution of first-order differences of the

curves in each cluster, representing the growth rate for boys and girls as function of age. Intra-class variation increases at ages around 12−16

(indicated by larger faded gray area), motivating the use of the scattering transform which is robust to deformations. (b) In the first two

heat maps, scattering coefficients are shown for the growth rate curves in each cluster, with colors representing coefficient magnitude. Each

row represents a point t at which we evaluate the coefficient (see Section 3.4). The third heat map represents the SPARCWaveweights w

corresponding to each coefficient.

content. The response variable is clearly divided into

two groups: 41 instances with moisture content lower

than 15, and 59 with moisture content above 15. We

use this grouping to create 2 classes. Applying the

scattering transform in combination with sparse clus-

tering improved accuracy significantly. However, us-

ing group sparsity reduced accuracy, perhaps because

out of 924 features only 2 are found to have non-zero

weights (see Table 1 and Figure 8 in the Appendix).

Table 1: Clustering accuracy (ARI) for three real
datasets. The SPARCScatter method shows superior
clustering accuracy over all datasets.

Method Growth Phoneme Wheat
SPARCScatter 0.91 0.73 0.46

SPARCScatter Group 0.91 0.73 0.3
Scattering + K-means 0.87 0.66 0.30

SPARCWave 0.62 0.30 0.31
Antoniadis [2] 0.62 0.34 0.35
Giacofci [14] 0.58 0.69 0.30

K-means 0.58 0.68 0.31

6 Conclusion and Further Work

We proposed a method for time-series clustering that

uses a “built-in” shrinkage of wavelet coefficients based

on their contribution to the clustering information.

We extended the sparse K-means framework by in-

corporating group structure and used it to exploit

wavelet multi-resolution properties in univariate sig-

nals, and multivariate structure. An interesting fu-

ture direction is to adapt this approach to other sparse

clustering methods. Another direction is to incor-

porate richer structures, such as tree-sparsity in the

wavelet and scattering coefficients, long-range depen-

dencies and interdependencies in multivariate signals.

In this work we applied sparse clustering to one-

dimensional signals. The wavelets transform is widely

used to represent two-dimensional signals such as im-

ages. In addition, a two-dimensional scattering trans-

form achieved excellent results in supervised image

classification tasks due to its invariance to translation,

dilation and deformation [6, 7]. It is thus natural to

apply our approach to sparse clustering of images and

other multi-dimensional datasets. Finally, there are

few known theoretical guarantees for sparse-clustering

methods, and it would be interesting to develop such

guarantees to the framework in [26] and it’s group ex-

tension we have proposed.
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