
Utility of polygenic embryo screening for disease

depends on the selection strategy

Appendix

1 The liability threshold model

The liability threshold model (LTM) is a classic model in quantitative genetics
(Dempster and Lerner, 1950; Falconer, 1965; Lynch and Walsh, 1998), and is
also commonly used to analyze modern data (e.g., (Wray and Goddard, 2010;
So et al., 2011; Lee et al., 2011, 2012; Do et al., 2012; Hayeck et al., 2017;
Weissbrod et al., 2018; Hujoel et al., 2020)). Under the LTM, a disease has an
underlying “liability”, which is normally distributed in the population, and is the
sum of two components: genetic and non-genetic (the environment). Further,
the LTM assumes an “infinitesimal”, or “polygenic” genetic basis, under which
a very large number of genetic variants of small effect combine to form the
genetic component. An individual is affected if his/her total liability (genetic +
environmental) exceeds a threshold.

Mathematically, if we denote the liability as y, the LTM can be written as

y = g + ε, (1)

where y ∼ N(0, 1) is a standard normal variable, g ∼ N(0, h2) is the genetic
component, with variance equal to the heritability h2, and ε ∼ N(0, 1−h2) is the
non-genetic component. In practice, we cannot measure the genetic component,
but only estimate it imprecisely with a polygenic risk score, denoted s. Following
previous work (So et al., 2011; Do et al., 2012; Lee et al., 2012; Treff et al., 2019a;
Karavani et al., 2019), we assume that the LTM can be written, similarly to Eq.
(1), as

y = s+ e, (2)

where y ∼ N(0, 1) as above, s ∼ N(0, r2
ps), where r2

ps is the proportion of the
variance in liability explained by the score, and e ∼ N(0, 1− r2

ps) is the residual
of the regression of the liability on s (and is uncorrelated with s), representing
environmental effects as well as genetic factors not accounted for by the score.

An individual is affected whenever his/her liability exceeds a threshold. The
threshold is selected such that the proportion of affected individuals is equal
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to the prevalence K, i.e., it is equal to zK , the (1 −K)-quantile of a standard
normal variable. Thus,

P (disease) = P (y > zK) = K. (3)

The model is illustrated in Figure 1B of the main text.

2 A model for the scores of n IVF embryos

Consider the polygenic risk scores (for a disease of interest) of n IVF embryos
of given parents. We assume no information is known about the parents, or, in
other words, that the parents are randomly and independently drawn from the
population. The scores of the embryos have a multivariate normal distribution,

s = (s1, . . . , sn) = MVN(0n,Σ), (4)

where the means form a vector 0n of n zeros, and the n× n covariance matrix
is

Σ = r2
ps


1 1

2 . . . 1
2

1
2 1 . . . 1

2
. . . . . . . . . . . .
1
2

1
2 . . . 1

 . (5)

The diagonal elements of the matrix are simply the variances of the individ-
ual scores of each embryo. The off-diagonal elements represent the covariance
between the scores of the embryos, who are genetically siblings. Based on stan-
dard quantitative genetic theory (Lynch and Walsh, 1998) (see also our previous
paper (Karavani et al., 2019)), the covariance between the scores of two siblings
is Cov (si, sj) = 1

2Var (s), and hence the off-diagonal elements follow. [The non-
score components (the e terms in Eq. (2)) are also correlated. The correlation
between the genetic components of e is modeled in Section 6. Modeling the cor-
relation between the environmental components was unnecessary in this paper
– see Section 10.]

As we showed in our previous work (Karavani et al., 2019), the scores can be
written as a sum of two independent multivariate normal variables, s = x+ c,
with

x = (x1, . . . , xn) ∼ MVN

(
0n,

r2
ps

2
In

)
and

c = (c1, . . . , cn) ∼ MVN

(
0n,

r2
ps

2
Jn

)
, (6)

where 0n is a vector of zeros of length n, In is the n × n identity matrix, and
Jn is the n × n matrix of all ones. The xi’s and ci’s have the same marginal
distribution, namely normal with mean zero and variance r2

ps/2 each. However,
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the xi’s are independent, whereas c has a constant covariance matrix, which
means that the ci’s are n identical copies of the same random variable,

c1 ∼ N

(
0,
r2
ps

2

)
and c2 = c3 = · · · = cn = c1 ≡ c. (7)

Thus, for each embryo i = 1, . . . , n,

si = xi + c. (8)

2.1 An alternative interpretation: conditioning on the av-
erage parental scores

The decomposition of the score in Eq. (8) can also be interpreted as conditioning
on the average score of the parents. To see that, write the maternal score as
sm and the paternal score as sf . The variables (si, sm, sf ) have a multivariate
normal distribution,

(si, sm, sf ) ∼ MVN


0

0
0

 ,

r
2
ps

r2ps
2

r2ps
2

r2ps
2 r2

ps 0
r2ps
2 0 r2

ps


 . (9)

In the above equation, the variances of all scores are equal to r2
ps. The covari-

ance terms are Cov (si, sm) = Cov (si, sf ) = 1
2Var (s) =

r2ps
2 , as the relatedness

between between parent and child is the same as for a pair of siblings. We
assume no correlation between the scores of the parents (i.e., no assortative
mating, see Section 10 for discussion). We are now interested in the conditional
density of si given sm and sf . Using standard results for multivariate normal
distributions, the conditional density of si is N(µ, σ2), where,

µ = Σ12Σ
−1
22

(
sm
sf

)
,

σ2 = Σ11 −Σ12Σ
−1
22 Σ21, (10)

and

Σ11 = r2
ps,Σ12 =

(
r2ps

2

r2ps
2

)
,Σ21 =

(
r2ps
2
r2ps
2

)
,Σ22 =

(
r2
ps 0
0 r2

ps

)
. (11)

These matrices are the blocks forming the covariance matrix in Eq. (9). Car-
rying out the matrix calculations, we obtain

µ =
sm + sf

2
,

σ2 =
r2
ps

2
. (12)
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Thus,

si ∼ N

(
sm + sf

2
,
r2
ps

2

)
≡ N(c, r2

ps/2), (13)

where we defined the shared component c ≡ sm+sf
2 as the average parental score.

The variance of c itself, across the population, is Var
(
sm+sf

2

)
= 2Var(s)

4 = r2
ps/2.

Thus, c ∼ N(0, r2
ps/2). In a given family, c is the same across all embryos. Thus,

Eq. (13) is equivalent to si = c+ xi, with c ∼ N(0, r2
ps/2) and xi ∼ N(0, r2

ps/2)
is an embryo-specific component.

An analogous result holds for the total genetic component of the embryo,
gi, simply by replacing the proportion of variance explained by the score (r2

ps)
with the heritability (h2). In other words, if gm and gf are the maternal and
paternal genetic components, respectively, then

gi ∼ N
(
gm + gf

2
,
h2

2

)
. (14)

3 The disease risk when implanting the embryo
with the lowest risk

We assume next that we select for implantation the embryo with the lowest
polygenic risk score for the disease of interest. Our goal will be to calculate the
probability of that embryo to be affected. Since si = xi + c, the score of the
selected embryo satisfies

smin = min(x1 + c, . . . , xn + c)

= min(x1, . . . , xn) + c

= xmin + c, (15)

where we defined xmin = min(x1, . . . , xn). Denote by i∗ the index of the selected
embryo (xi∗ = xmin). The liability of the embryo with the lowest risk is thus

yi∗ = smin + ei∗

= xmin + c+ ei∗

= xmin + ẽ, (16)

where ei is the non-score component of embryo i, and ẽ = c+ ei∗ . We have,

Var (ẽ) = Var (c) + Var (ei∗) =
r2
ps

2
+ (1− r2

ps) = 1−
r2
ps

2
. (17)

Therefore, the liability of the selected embryo can be written as a sum of two
(independent) variables: xmin, which is the minimum of n independent (zero
mean) normal variables with variance r2

ps/2 each; and ẽ, which is a normal
variable with (zero mean and) variance 1− r2

ps/2.
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The distribution of xmin can be computed based on the theory of order
statistics,

P (xmin > t) = [P (x > t)]
n

=

[
1− Φ

(
t

rps/
√

2

)]n
. (18)

In the above equation, the minimum of n variables is greater than t if and only
if all variables are greater than t. The distribution of each x is normal with zero

mean and variance r2
ps/2, and hence P (x > t) = 1 − Φ

(
t

rps/
√

2

)
, where Φ(·) is

the cumulative probability distribution (CDF) of a standard normal variable.
We can now compute the probability of the selected embryo to be affected

by demanding that the total liability is greater than the threshold zK . Denote
the probability of disease as Ps(disease) (s stands for selected). Conditional on
ẽ,

Ps(disease | ẽ) = P (yi∗ > zK | ẽ)
= P (xmin + ẽ > zK)

= P (xmin > zK − ẽ)

=

[
1− Φ

(
zK − ẽ
rps/
√

2

)]n
, (19)

where in the fourth line, we used Eq. (18). Next, denote by f(ẽ) the density of
ẽ, and by φ(·) the probability density function of a standard normal variable.
Given that ẽ ∼ N(0, 1− r2

ps/2),

Ps(disease) =

∫ ∞
−∞

Ps(disease | ẽ)f(ẽ)dẽ

=

∫ ∞
−∞

[
1− Φ

(
zK − ẽ
rps/
√

2

)]n
1√

1− r2
ps/2

φ

 ẽ√
1− r2

ps/2

 dẽ

=

∫ ∞
−∞

1− Φ

zK − t
√

1− r2
ps/2

rps/
√

2

n φ(t)dt. (20)

In the third line, we changed variables: t = ẽ/
√

1− r2
ps/2. Eq. (20) is our final

expression for the probability of the embryo with the lowest score to be affected.

3.1 The risk reduction when conditioning on the mean
parental score

Consider the case when c is given, or, in other words, when we know the mean
parental polygenic score. Let us compute the disease risk in such a case. We
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start from Eq. (16),

yi∗ = smin + ei∗

= xmin + c+ ei∗ . (21)

Then,

Ps(disease | c, ei∗) = P (yi∗ > zK | ei∗)
= P (xmin + c+ ei∗ > zK)

= P (xmin > zK − c− ei∗)

=

[
1− Φ

(
zK − c− ei∗
rps/
√

2

)]n
, (22)

where in the last line, we used Eq. (18).
Finally, with f(ei∗) denoting the density of ei∗ , and recalling that ei∗ ∼

N
(
0, 1− r2

ps

)
,

Ps(disease | c) =

∫ ∞
−∞

Ps(disease | c, ei∗)f(ei∗)dei∗

=

∫ ∞
−∞

[
1− Φ

(
zK − c− ei∗
rps/
√

2

)]n
1√

1− r2
ps

φ

 ei∗√
1− r2

ps

 dei∗

=

∫ ∞
−∞

1− Φ

zK − c− t
√

1− r2
ps

rps/
√

2

n φ(t)dt, (23)

where in the last line, we changed variables, t = ei∗/
√

1− r2
ps. Eq. (23) thus

provides the probability of disease when we are given the mean parental score
c.

4 The disease risk when excluding high-risk em-
bryos

We now consider the selection strategy in which the implanted embryo is se-
lected at random, as long as its risk score is not particularly high. Specifically,
we assume that whenever possible, embryos at the top q risk percentiles are
excluded. When all embryos have high risk, we assume that a random embryo
is selected. Let zq be the (1 − q)-quantile of the standard normal distribution.
The variance of the score is r2

ps, and therefore, the score of the selected embryo
must be lower than zqrps.

To compute the disease risk in this case, we first condition on the shared,
family-specific component c. We later integrate over c to derive the risk across
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the population. Denote by xs the value of x for the selected embryo, and for
the moment, also condition on xs. We have,

Ps(disease |xs, c) = P (y > zK | c)
= P (s+ e > zK | c)
= P (xs + c+ e > zK)

= P (e > zK − xs − c)

= 1− Φ

zK − xs − c√
1− r2

ps

 , (24)

To obtain Ps(disease | c), we need to integrate over f(xs), the density of xs.
In fact, f(xs) is a mixture of two distributions, depending on whether or not
all embryos were high risk. Denote by H the event that all embryos are high
risk, and let us first compute the probability of H. Recall that given c, the
scores of all embryos, si = xi+c, are independent. The event H is equivalent to
the intersection of the independent events {si > zqrps} for i = 1, . . . , n. Thus,
recalling that xi ∼ N(0, r2

ps/2),

P (H) =

n∏
i=1

P (si > zqrps)

=

n∏
i=1

P (xi + c > zqrps)

=

n∏
i=1

P (xi > zqrps − c)

=

[
1− Φ

(
zqrps − c
rps/
√

2

)]n
. (25)

Given H, we know that all scores were higher than the cutoff, i.e., that
xi > zqrps− c for all i = 1, . . . , n. An embryo is then selected at random. Thus,
xs, the value of x of the selected embryo, is a realization of a normal random
variable truncated from below. Specifically, if fx(·) is the unconditional density
of x, then for xs > zqrps − c,

f(xs |H) =
fx(xs)

P (x > zqrps − c)
=

1
rps/
√

2
φ
(

xs

rps/
√

2

)
1− Φ

(
zqrps−c
rps/
√

2

) . (26)

In the case H did not occur, we select an embryo at random among embryos
with score si < zqrps, i.e., xi < zqrps−c. The density of xs is again, analogously
to the above case, a realization of a normal random variable, but this time
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truncated from above. For xs < zqrps − c,

f(xs |H) =
fx(xs)

P (x < zqrps − c)
=

1
rps/
√

2
φ
(

xs

rps/
√

2

)
Φ
(
zqrps−c
rps/
√

2

) . (27)

Using these results, we can write the density of xs when conditioning only
on c,

f(xs) =

{
f(xs |H)P (H) + 0 · P (H) for xs > zqrps − c
0 · P (H) + f(xs |H)P (H) for xs < zqrps − c

=



1
rps/

√
2
φ

(
xs

rps/
√

2

)
1−Φ

(
zqrps−c

rps/
√

2

) [
1− Φ

(
zqrps−c
rps/
√

2

)]n
for xs > zqrps − c

1
rps/

√
2
φ

(
xs

rps/
√

2

)
Φ

(
zqrps−c

rps/
√

2

) {
1−

[
1− Φ

(
zqrps−c
rps/
√

2

)]n}
for xs < zqrps − c

(28)

We can now integrate over all xs, still conditioning on c, and using Eq. (24)
and some algebra,

Ps(disease | c) =

∫ ∞
−∞

f(xs)Ps(disease |xs, c)dxs

=

∫ zqrps−c

−∞

1
rps/
√

2
φ
(

xs

rps/
√

2

)
Φ
(
zqrps−c
rps/
√

2

) {
1−

[
1− Φ

(
zqrps − c
rps/
√

2

)]n}1− Φ

zK − xs − c√
1− r2

ps

 dxs
+

∫ ∞
zqrps−c

1
rps/
√

2
φ
(

xs

rps/
√

2

)
1− Φ

(
zqrps−c
rps/
√

2

) [
1− Φ

(
zqrps − c
rps/
√

2

)]n 1− Φ

zK − xs − c√
1− r2

ps

 dxs
=

∫ ∞
−∞

η(t, γ(c))ξ(t, c)dt, (29)

where we defined

ξ(t, c) = φ(t)

1− Φ

zK − trps/
√

2− c√
1− r2

ps

 ,
η(t, γ) =

{
1−[1−Φ(γ)]n

Φ(γ) for t < γ,

[1− Φ (γ)]
n−1

for t > γ.
, and

γ(c) =
√

2zq −
c

rps/
√

2
. (30)

Eq. (29) provides an expression for the probability of a disease given the mean
parental score c.
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Finally, we can integrate over all c in order to obtain the probability of disease
in the population. Recalling that c ∼ N(0, r2

ps/2) and denoting its density as
f(c), and again after some algebra,

Ps(disease) =

∫ ∞
−∞

Ps(disease | c)f(c)dc

=

∫ ∞
−∞

φ(u)

[∫ ∞
−∞

η(t, β(u))ζ(u, t)dt

]
du, (31)

where we defined

ζ(u, t) = φ(t)

1− Φ

zK − (u+ t)rps/
√

2√
1− r2

ps

 ,
β(u) =

√
2zq − u, (32)

and η(t, ·) was defined in Eq. (30) above. Eq. (31) is our final expression for the
probability of an embryo to be affected after being selected randomly among
non-high-risk embryos.

5 The relative risk reduction

We define the relative risk reduction (RRR) as follows. We are given the preva-
lence K and the probability of the selected embryo to be affected Ps(disease)
(averaged over the population). Then,

RRR =
K − Ps(disease)

K
= 1− Ps(disease)

K
. (33)

The absolute risk reduction (ARR) is similarly defined as K − Ps(disease). For
example, if a disease has prevalence of 5% and an embryo selected based on
PRS has an average probability of 3% to be affected, the relative risk reduction
is 40%, while the absolute risk reduction is 2%.

To use Eq. (33), Ps(disease) is given by Eq. (20) for the lowest-risk priori-
tization strategy, and by Eq. (31) for the high-risk exclusion strategy. We solve
the integrals in these equations numerically in R using the function integrate

(see Section 11).

5.1 The per-couple relative risk reduction

The RRR, as defined in Eq. (33), is the (complement of the) ratio between two
average risks: the average risk of a random couple that would select an embryo
based on its PRS, and the average risk of a random couple that would select an
embryo at random. It can also be seen as the relative risk reduction between the
risks in two hypothetical “populations”: one in which all embryos are selected
based on a PRS-based strategy, and one in which all embryos are selected at
random.
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However, a shortcoming of the population-level RRR definition is that it
does not provide information on the risk reduction expected for individual cou-
ples. In other words, a given couple may wish to know the extent to which
they can reduce disease risk in their children by electing to select an embryo
based on PRS. Conveniently, the only relevant information that characterizes
the potential risk reduction for a given couple is c, the average parental score.

We define the per-couple relative risk reduction, or pcRRR(c), as

pcRRR(c) =
Pr(disease | c)− Ps(disease | c)

Pr(disease | c)
= 1− Ps(disease | c)

Pr(disease | c)
, (34)

where Pr(disease | c) is the “baseline” risk, i.e., the probability of disease of a
random embryo (r stands for random; this can also be seen as the risk in natural
procreation). Note that we can similarly define the absolute risk reduction
(ARR) as Pr(disease | c)− Ps(disease | c).

We have already computed Ps(disease | c) for the two selection strategies
(Eqs. (23) and (29)). To compute Pr(disease | c), we write the liability of a
random embryo as

y = s+ e

= x+ c+ e

= x̃+ c, (35)

where we defined x̃ = x + e. Var (x̃) = Var (x) + Var (e) = r2
ps/2 + 1 − r2

ps =

1−r2
ps/2, and thus, x̃ ∼ N

(
0, 1− r2

ps/2
)
. The conditional probability of disease

is

Pr(disease | c) = P (y > zK | c)
= P (x̃+ c > zK)

= P (x̃ > zK − c)

= 1− Φ

 zK − c√
1− r2

ps/2

 . (36)

5.2 The distribution of the per-couple relative risk reduc-
tion

We can compute the probability density of pcRRR(c) across all couples in the
population, fpc(x), as follows,

fpc(x) =

∫ ∞
−∞

δ (x− pcRRR(c)) f(c)dc, (37)

where δ(x) is Dirac’s delta function, c is the parental average score, and f(c) ∼
N
(
0, r2

ps/2
)

is its density. For computing fpc(x) numerically, we sum over 104
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quantiles of c (which by definition have equal probability), and then compute
the probability of the pcRRR to have value within each bin,

P (pcRRR ∈ [r1, r2]) =
1

104

104∑
i=1

1pcRRR(ci)∈[r1,r2], (38)

where 1 is the indicator variable, and ci is the i/104 quantile of c (a value such
that c is less than ci with probability (i− 0.5)/104).

The average pcRRR across all couples is

〈pcRRR〉 =

∫ ∞
−∞

pcRRR(c)f(c)dc. (39)

Numerically,

〈pcRRR〉 =
1

104

104∑
i=1

pcRRR(ci). (40)

Note that Eq. (39) is an average of ratios. This is in contrast to Eq. (33), which
a ratio of averages. As such, those average risk reductions are not expected to be
identical. Empirically, given that pcRRR(c) depends only weakly on c, we found
that differences were small. For example, 〈pcRRR〉 was higher than the RRR
from Eq. (33) by ≈ 0.01 for r2

ps ≤ 0.1 (for K = 0.01, 0.05, 0.2); when K = 0.05
and r2

ps = 0.1, 〈pcRRR〉 was 0.48, while the RRR was 0.47. Differences were
larger for r2

ps = 0.3; for example, for K = 0.05, 〈pcRRR〉 was 0.77, while the
RRR was 0.72.

5.3 The per-batch relative risk reduction

The pcRRR, i.e., Eq. (34), can be interpreted as follows. A given couple
can choose between two options: either generate embryos by IVF and select an
embryo based on its PRS, or select an embryo at random (=conceive naturally).
The pcRRR quantifies the risk reduction between the outcomes under these two
choices. For each choice, the risk is computed by averaging over all possible
embryos that may have been generated in an IVF cycle. However, one may also
wish to quantify the variability of the outcome for a given couple. This could
be accomplished as follows: for each couple and for each batch of n embryos,
compute the relative risk reduction when selecting an embryo based on PRS vs
when selecting at random. We define this quantity as the per-batch relative risk
reduction, or pbRRR.

Modeling the pbRRR is straightforward using our framework. Given the
scores of the embryos, s1, . . . , sn, the selected embryo is immediately determined
for the lowest-risk prioritization strategy. For the high-risk exclusion strategy,
the selected embryo can be, with equal probability, any of the embryos that are
not high risk (or any embryo if all embryos are high risk). For random selection,
the selected embryo can be any embryo with equal probability. Given the score of
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the selected embryo, si∗ , and given the non-score component, e ∼ N(0, 1− r2
ps),

the probability of disease of the selected embryo is

P (disease) = P (y > zK | si∗)
= P (si∗ + e > zK)

= P (e > zK − si∗)

= 1− Φ

 zK − si∗√
1− r2

ps

 . (41)

The probability density of the scores is then given by Eq. (13). The distribution
of the pbRRR across batches of embryos can then be computed by integrating
over all possible sets of n scores, similarly to Eq. (37). However, this would be
tedious in practice, and we do not pursue this direction here.

6 The risk reduction conditional on family his-
tory

In the following, we compute the relative risk reduction when the disease status
of the parents is given.

6.1 Model

Let us rewrite our model for the liability as

y = s+ w + ε. (42)

Here, w represents all genetic factors not included in the score. We keep track of
both s and w, because both are inherited, and hence, information on the disease
status of the parents will be informative on their values in children (see below).
However, we need to track each term separately because selection is only based
on s. As in Section 1, we assume s, w, and ε are independent, y ∼ N(0, 1),
s ∼ N(0, r2

ps), and ε ∼ N(0, 1− h2), and thus w ∼ N(0, h2 − r2
ps).

We derive the risk to the embryos in two main steps. First, we assume
that the values of s and w are known for each parent, and compute the risk
of the embryo under each selection strategy (lowest-risk prioritization, high-risk
exclusion, or random selection). Then, we derive the posterior distribution of
the parental genetic components given the parental disease status, and integrate
over these components to obtain the final risk estimate.

6.2 The risk of the selected embryo given its score

Denote the maternal score as sm and the paternal score as sf , denote similarly
wm and wf , and assume that they are given. Also denote gm = sm + wm and
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gf = sf + wf . As we explained in Section 2.1, for any child i, the distribution
of the score si is

si ∼ N

(
sm + sf

2
,
r2
ps

2

)
or si = c+ xi, (43)

where c = (sm + sf )/2 and xi ∼ N(0, r2
ps/2). Similarly, the distribution of the

non-score genetic component is

wi ∼ N

(
wm + wf

2
,
h2 − r2

ps

2

)
or wi =

wm + wf
2

+ vi, (44)

where vi ∼ N
(
0, (h2 − r2

ps)/2
)
.

Given the parental genetic components, we can write the liability of each
embryo as, for i = 1, . . . , n,

yi =
sm + sf

2
+ xi +

wm + wf
2

+ vi + εi, (45)

where εi ∼ N(0, 1− h2). All the three random variables in the above equation
(xi, vi, and εi) are independent, and xi and vi are each independent across
embryos. (It is not necessary to specify whether the εi are independent.) Denote
the event that embryo i is affected as Di, and condition on the value of xi for
that embryo. The probability of disease is

P (Di | sm, wm, sf , wf , xi) = P (yi > zK | sm, wm, sf , wf , xi)

= P

(
sm + sf

2
+ xi +

wm + wf
2

+ vi + εi > zK

)
= P

(
vi + εi > zK −

sm + sf
2

− wm + wf
2

− xi
)

= 1− Φ

zK − sm+sf
2 − wm+wf

2 − xi√
1− h2/2− r2

ps/2

 . (46)

The last line holds because Var (vi + εi) = (h2 − r2
ps)/2 + (1− h2) = 1− h2/2−

r2
ps/2.

We henceforth denote Ds as the event that the selected embryo is affected.
In the next three subsections, we integrate the probability of the disease over
xi, where the distribution of xi will vary depending on the selection strategy.
This will give us the disease risk given the parental genetic components.

6.3 Selecting the lowest-risk embryo

Denote by xi∗ the embryo-specific component of the embryo with the lowest
such component. Recall that for each embryo, xi ∼ N(0, r2

ps/2). We can use
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the theory of order statistics, as in previous sections, to compute the density of
xi∗ .

f(xi∗) =
n

rps/
√

2
φ

(
xi∗

rps/
√

2

)[
1− Φ

(
xi∗

rps/
√

2

)]n−1

. (47)

Eq. (46) can now be integrated over all xi∗. After changing variables t =
xi∗/(rps/

√
2), we obtain

P (Ds | sm, wm, sf , wf ) =

=

∫ ∞
−∞

nφ(t) [1− Φ(t)]
n−1

1− Φ

zK − sm+sf
2 − wm+wf

2 − trps/
√

2√
1− h2/2− r2

ps/2

 dt
=

∫ ∞
−∞

nφ(t) [1− Φ(t)]
n−1

1− Φ

zK − gm+gf
2 − trps/

√
2√

1− h2/2− r2
ps/2

 dt. (48)

Note that the final result depends only on gm and gf . Thus, Eq. (48) can be
integrated over gm and gf (according to their posterior distribution given the
family disease history; see Section 6.6) to provide the disease risk probability.

6.4 Excluding high-risk embryos

Here, the density of the score of the selected embryo is given by Eq. (28), which
continues to hold, with c = (sm + sf )/2.

f(xs) =



1
rps/

√
2
φ

(
xs

rps/
√

2

)
1−Φ

(
zqrps−c

rps/
√

2

) [
1− Φ

(
zqrps−c
rps/
√

2

)]n
for xs > zqrps − c

1
rps/

√
2
φ

(
xs

rps/
√

2

)
Φ

(
zqrps−c

rps/
√

2

) {
1−

[
1− Φ

(
zqrps−c
rps/
√

2

)]n}
for xs < zqrps − c

(49)
Integrating over all xs, following similar steps as in Section 4, we obtain, denot-
ing by Ds the event that the selected embryo is affected,

P (Ds | sm, wm, sf , wf ) =

∫ ∞
−∞

η(t, γ)ξ(t)dt, (50)

14



where we defined

ξ(t) = φ(t)

1− Φ

zK − trps/
√

2− sm+sf
2 − wm+wf

2√
1− h2/2− r2

ps/2


= φ(t)

1− Φ

zK − trps/
√

2− gm+gf
2√

1− h2/2− r2
ps/2

 ,
η(t, γ) =

{
1−[1−Φ(γ)]n

Φ(γ) for t < γ,

[1− Φ (γ)]
n−1

for t > γ
, and

γ =
√

2zq −
c

rps/
√

2
. (51)

Here, Eq. (50) depends on c, gm, gf , and they must be integrated over to obtain
the final disease probability.

6.5 The baseline risk

To compute the relative risk reduction, we need the baseline risk, i.e., the risk
when selecting a embryo at random given the parental genetic components. We
have

P (Ds | sm, wm, sf , wf ) = P (yi > zK)

= P

(
sm + sf

2
+ xi +

wm + wf
2

+ vi + εi > zK

)
= P

(
xi + vi + εi > zK −

gm + gf
2

)
= 1− Φ

(
zK − gm+gf

2√
1− h2/2

)
. (52)

The last line holds because Var (xi + vi + εi) = r2
ps/2+(h2−r2

ps)/2+(1−h2) =
1− h2/2.

6.6 The disease risk conditional on the parental disease
status

In subsections 6.3, 6.4, and 6.5, we computed the disease probability under the
various strategies given the parental genetic components. For the baseline risk
and for the lowest-risk prioritization strategy, the risk depended only on gm
and gf . For the high-risk exclusion strategy, the risk also depended on c. In
this section, we compute the posterior probability of these genetic components
conditional on the disease status of the parents.

Denote by Dm the indicator variable that the mother is affected (i.e., Dm = 1
if the mother is affected and Dm = 0 otherwise), and define Df similarly. The
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risk of the selected embryo conditional on the parental disease status can be
written as

P (Ds |Dm, Df ) =

∫∫∫
dgmdgfdcP (Ds | gm, gf , c,Dm, Df ) f(gm, gf , c |Dm, Df )

=

∫∫∫
dgmdgfdcP (Ds | gm, gf , c) f(c | gm, gf )f(gm, gf |Dm, Df ).

(53)

The second line of Eq. (53) consists of three terms. The first is P (Ds | gm, gf , c),
which was computed in the previous subsections for the various selection strate-
gies. Note that we assumed P (Ds | gm, gf , c,Dm, Df ) = P (Ds | gm, gf , c). This
holds because given the genetic components of the parents, their disease sta-
tus does not provide additional information on the disease status of the chil-
dren, at least under a model where the environment is not shared (see Section
10). The second term is the density of c, which can be similarly written as
f(c | gm, gf , Dm, Df ) = f(c | gm, gf ). The third term is the posterior distribu-
tion of gm and gf given the parental disease status, f(gm, gf |Dm, Df ). In the
following, we derive the third term and then the second term.

Note that if P (Ds | gm, gf , c) = P (Ds | gm, gf ), as in the case of the baseline
risk (Eq. 52) and the lowest-risk prioritization (Eq. (48)), the risk of the
selected embryo can be simplified by integrating over c,

P (Ds |Dm, Df ) =

∫∫
dgmdgfP (Ds | gm, gf ) f(gm, gf |Dm, Df ). (54)

6.7 The distribution of the parental genetic components
given the parental disease status

First, we assume (given that we did not model assortative mating) that given
one parent’s disease status, his/her genetic component is independent of the
spouse’s disease status or genetic factors. Thus, the posterior distribution can
be factored into

f(gm, gf |Dm, Df ) = f(gm |Dm)f(gf |Df ). (55)

Next, without loss of generality, we focus on just the mother. To derive the
posterior distribution f(gm |Dm) we first need the prior, gm ∼ N(0, h2).

fpr(gm) =
1

h
φ
(gm
h

)
. (56)

Next, the likelihood that the mother is affected is

P (Dm = 1 | gm) = P (y > zK)

= P (gm + ε > zK)

= P (ε > zK − gm)

= 1− Φ

(
zK − gm√

1− h2

)
. (57)
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Similarly,

P (Dm = 0 | gm) = Φ

(
zK − gm√

1− h2

)
. (58)

Using Bayes’ theorem,

f(gm |Dm = 1) =
P (Dm = 1 | gm)fpr(gm)

P (Dm = 1)

=

[
1− Φ

(
zK−gm√

1−h2

)]
1
hφ
(
gm
h

)
K

. (59)

Similarly,

f(gm |Dm = 0) =
P (Dm = 0 | gm)fpr(gm)

P (Dm = 0)

=
Φ
(
zK−gm√

1−h2

)
1
hφ
(
gm
h

)
1−K

. (60)

The same results hold for f(gf |Df = 1) and f(gf |Df = 1). We have thus
specified the posterior distribution f(gm, gf |Dm, Df ).

6.8 The distribution of the parental mean score given the
parental genetic components

The final missing term is f(c | gm, gf ). To compute this distribution, we note
that c, gm, and gf have a multivariate normal distribution,

(c, gm, gf ) ∼ MVN


0

0
0

 ,


r2ps
2

r2ps
2

r2ps
2

r2ps
2 h2 0
r2ps
2 0 h2


 . (61)

To explain the above equation, recall that Var (c) = r2
ps/2 and Var (gm) =

Var (gf ) = h2. Then,

Cov (c, gm) = Cov

(
sm + sf

2
, gm

)
=

1

2
Cov (sm, gm)

=
1

2
Cov (sm, sm + wm) =

1

2
Var (sm) =

r2
ps

2
. (62)

A similar result holds for the paternal genetic component. To compute the
density of c given gm and gf , we use standard theory for multivariate normal
variables (as in Section 2.1). We have

c | gm, gf ∼ N(µ, σ2), (63)
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with

µ =
r2
ps

h2

(
gm + gf

2

)
,

σ2 =
r2
ps

2h2
(h2 − r2

ps). (64)

We have thus specified f(c | gm, gf ).

6.9 Summary of the computation

In summary, for the high-risk exclusion strategy, the probability of disease of
the selected embyro given the parental disease status is given by Eq. (53),
with P (Ds | gm, gf , c) given in Eq. (50) and f(c | gm, gf ) in Eq. (63). The
conditional probability of disease for the lowest-risk prioritization strategy and
for random selection (the baseline risk) is given by Eq. (54), with P (Ds | gm, gf )
given in Eqs. (48) and Eq. (52), respectively. For all selection strategies,
f(gm, gf |Dm, Df ) is given by Eqs. (55), (59), and (60), depending on the
particular family history.

Numerically, computing the baseline disease risk requires two integrals (over
gm and gf ). Computing the risk for the lowest-risk prioritization strategy re-
quires three integrals (over gm, gf , and t). Computing the risk for the high-risk
exclusion strategy requires four integrals (over gm, gf , c, and t).

7 Two diseases

Prioritizing embryos based on low risk for a target disease may increase risk
for a second disease, if that disease is genetically inversely correlated with the
target disease. In this section, we develop a model for the PRSs of two diseases
in order to investigate this risk.

We denote the variance explained by the scores of the two diseases as r2
1 and

r2
2, where disease 1 is the target disease (i.e., embryos are prioritized based on

their risk for that disease), and disease 2 is the correlated disease. Denote the
genetic correlation between the diseases as ρ (where ρ < 0 is the case raising
the concern about increasing the risk of the correlated disease), the scores of

a child as s(1) and s(2), the scores of the mother as s
(1)
m and s

(2)
m , and the

scores of the father as s
(1)
f and s

(2)
f . The vector (s(1), s(2), s

(1)
m , s

(2)
m , s

(1)
f , s

(2)
f )

has a multivariate normal distribution, with zero means, and with the following
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covariance matrix (extending Eq. (9)).

Σ =



s(1) s(2) s
(1)
m s

(2)
m s

(1)
f s

(2)
f

s(1) r2
1 ρr1r2

r21
2

ρr1r2
2

r21
2

ρr1r2
2

s(2) ρr1r2 r2
2

ρr1r2
2

r22
2

ρr1r2
2

r22
2

s
(1)
m

r21
2

ρr1r2
2 r2

1 ρr1r2 0 0

s
(2)
m

ρr1r2
2

r22
2 ρr1r2 r2

2 0 0

s
(1)
f

r21
2

ρr1r2
2 0 0 r2

1 ρr1r2

s
(2)
f

ρr1r2
2

r22
2 0 0 ρr1r2 r2

2


(65)

In the above covariance matrix, we assumed that the correlation between the
scores of the two diseases is also ρ. The covariance between parent-child scores
for different diseases is half the covariance of the scores within an individual
(e.g., see (Karavani et al., 2019)).

Next, we need the density of
(
s(1), s(2)

)
, conditional on

(
s

(1)
m , s

(2)
m , s

(1)
f , s

(2)
f

)
.

We follow a similar procedure as in Section 2.1, and obtain the conditional
density of

(
s(1), s(2)

)
as MVN(µc,Σc) with

µc =

 s(1)m +s
(1)
f

2
s(2)m +s

(2)
f

2

 ,

Σc =

(
r21
2

ρr1r2
2

ρr1r2
2

r22
2

)
. (66)

We would like to compute the expected increase in risk to become affected
by the second disease, given any selection strategy of embryos based on a PRS
for the first disease. Solving this problem analytically is beyond the scope of this
work. However, the above results imply a method we could use for simulations.

Let us first consider how to draw the average parental scores, which we

denote c(1) = (s
(1)
m + s

(1)
f )/2 and c(2) = (s

(2)
m + s

(2)
f )/2. The vector

(
c(1), c(2)

)
has a multivariate normal distribution with zero means (as each parental score
has zero mean in the population), and the following covariance matrix. The
variances are Var

(
c(1)
)

= r2
1/2 and Var

(
c(2)
)

= r2
2/2. The covariance is

Cov
(
c(1), c(2)

)
= Cov

(
s

(1)
m + s

(1)
f

2
,
s

(2)
m + s

(2)
f

2

)

=
1

2
Cov

(
s(1)
m , s(2)

m

)
=
ρr1r2

2
. (67)

Thus, the covariance matrix is equal to Σc from Eq. (66) above. This suggests
the following simple algorithm for generating the risk scores of the embryos.
Generate n+ 1 independent pairs of numbers from the distribution((

c(1)

c(2)

)
,

(
x

(1)
1

x
(2)
1

)
, . . . ,

(
x

(1)
n

x
(2)
n

))
∼ MVN

((
0
0

)
,

(
r21
2

ρr1r2
2

ρr1r2
2

r22
2

))
. (68)
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Then set the scores of embryo i as s
(1)
i = c(1) + x

(1)
i and s

(2)
i = c(2) + x

(2)
i .

In our simulations, we select an embryo based on its score for disease 1,
according to a selection strategy. We draw the non-score component for disease
1 of the selected embryo as e(1) ∼ N(0, 1− r2

1), and the liability of the embryo
for that disease is then y(1) = s(1) + e(1). We draw the liability for disease 2 of
the selected embryo similarly. In our simulations, we draw e(1) and e(2) inde-
pendently, even though they are correlated (at least via the non-score genetic
component), because we are only interested in the marginal outcomes for each
disease separately. The selected embryo is designated as affected by each disease
if the liability of that disease exceeds its respective threshold.

We note that the above model represents the following approximation. As
the scores are (noisily) estimating the total genetic effects, the score of one
disease is correlated with the non-score genetic component of the other disease.
Thus, a more accurate expression for the liability to disease 2 would take into

account not only s
(2)
i but also s

(1)
i . However, the dependence is weak.

8 Comparison to previous work

In the “gwern” blog (https://www.gwern.net/Embryo-selection), the utility
of embryo selection for traits and/or diseases was investigated. For disease risk,
a model similar to ours was studied, based on the liability threshold model.
However, the model assumed that given the polygenic score, the distribution of
the remaining contribution to the liability has unit variance, instead of 1− r2

ps

(the function liabilityThresholdValue therein). Further, the blog provided
only numerical results, did not consider the high-risk exclusion strategy, did
not consider the risk reduction conditional on the parental scores or disease
status, and did not consider the per-couple relative risk reduction. Treff et
al. (Treff et al., 2019a) also employed the liability threshold model to evaluate
embryo selection for disease risk. However, they did not consider the high-risk
exclusion strategy, and did not compute analytically the risk reduction. They
only provided simulation results for the case when a parent is affected based on
an approximate model.

9 Simulations

Our analytical results in the above sections provide exact expressions for the
relative risk reduction under various settings in the form of integrals, which we
then solve numerically. To validate our analytical derivations and the numeri-
cal solutions, we also simulated the scores of embryos under each setting, and
verified that the empirical risk reductions agree with the analytical predictions.

To simulate the scores of embryos, we used the representation si = xi + c,
where (x1, . . . , xn) are independent normals with zero means and variance r2

ps/2,
and c ∼ N(0, r2

ps/2) is shared across all embryos. Thus, for each “couple”, we
first draw c, then draw n independent normals (x1, . . . , xn), and then compute

20

https://www.gwern.net/Embryo-selection


the score of embryo i as si = xi + c, for i = 1, . . . , n. The score of the selected
embryo was the lowest among the n embryos in the lowest-risk prioritization
strategy. For the high-risk exclusion strategy, we selected the first embryo with
score s < zqrps. If no such embryo existed, we selected the first embryo (except
for one analysis, in which, if all embryos were high-risk, we selected the embryo
with the lowest score.) We then drew the residual of the liability as e ∼ N(0, 1−
r2
ps), and computed the liability as s∗ + e, where s∗ is the score of the selected

embryo. If the liability exceeded the threshold zK , we designated the embryo
as affected. We repeated over 106 couples, and computed the probability of
disease as the fraction of couples in which the selected embryo was affected. We
computed the relative risk reduction using Eq. (33).

For the setting when the parental risk scores are given, we computed c as
c = (sm + sf )/2. We specified the maternal score as a percentile pm, such
that the score itself was sm = zpmrps, where zpm is the pm percentile of the
standard normal distribution. We similarly specified the paternal score. The
remaining calculations were as above. For the baseline risk, we used the same
data, assuming that the first embryo in each family was selected.

When conditioning on the parental disease status, we first drew the three
independent parental components, all as normal variables with zero mean. We
drew sm and sf with variance r2

ps; wm and wf with variance h2 − r2
ps; and

εm and εf with variance 1 − h2. We computed the maternal liability as ym =
sm +wm + εm, and designated the mother as affected if ym > zK . We similarly
designated the paternal disease status. We then drew the score of each embyro as
si = c+xi, where c = (sm+sf )/2 (using the already drawn parental scores) and
xi ∼ N(0, r2

ps/2), for i = 1, . . . , n, are independent across embryos. We selected
one embryo based on the selection strategy, as described above. If s∗ is the
score of the selected embryo, we computed the liability of the selected embyro
as s∗ + (wm + wf )/2 + v + ε, where v ∼ N(0, (h2 − r2

ps)/2) and ε ∼ N(1− h2).
We designated the embryo as affected if its liability exceeded zK . We tallied the
proportion of affected embryos separately for each number of affected parents
(0,1, or 2). To compute the baseline risk, we again used the first embryo in each
family.

For two diseases, we do not have an analytical solution for the change in
risk of the second disease. We thus evaluated the risk using simulations only.
We considered the lowest-risk prioritization strategy and the case of random
parents. For each couple and for each embryo, we generated polygenic scores
for the two diseases as outlined in Section 7. We selected the embryo with the
lowest score for the target disease, but then considered the score of that embryo
for the second, correlated disease. Denote by s∗(2) the score of the selected
embryo for the second disease. We drew the residual of the liability for the
second disease as e(2) ∼ N(0, 1 − r2

2), and the liability of the embryo for that

disease was then s∗(2) + e(2). If the liability exceeded the threshold of that
disease, we designated the embryo as affected. We also repeated for a random
selection of an embryo for each couple. We computed the relative risk increase
based on the ratio between the risks with or without PRS-based selection.
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10 Limitations of the model

Our model has a number of limitations. First, our results rely on several mod-
eling assumptions. (1) We assumed an infinitesimal genetic architecture for the
disease, which will not be appropriate for oligogenic diseases or when screening
the embryos for variants of very large effect. We did not assess the robustness of
our theoretical results to deviations from normality in the tails of the distribu-
tions of the genetic and non-genetic components (although the good agreement
with the simulations based on the real genomic data provide some support that
the model is reasonable). (2) Assumption (1) implies that the variance of the
scores of children are always half the population variance, regardless of the
parental PRSs or the disease considered (Eq. (13)). However, as shown in Chen
et al. (2020), the variance of the scores in children can vary across families.
On the other hand, Chen et al. also showed (Figure 3C therein) that between-
family differences decrease when increasing the number of variants included in
the PRS; and, as we showed here, the differences seem to be explained mostly
by sampling variance. (3) Our model also assumes no assortative mating, which
seems reasonable given that for genetic disease risk, correlation between par-
ents is weak (Rawlik et al., 2019), and given that our previous study of traits
showed no difference in the results between real and random couples (Kara-
vani et al., 2019). (4) When conditioning on the parental disease status, we
assumed independence between the environmental component of the child and
either genetic or environmental factors influencing the disease status of the par-
ents. Family-specific environmental factors were shown to be small for complex
diseases (Wang et al., 2017). The influence of parental genetic factors on the
child’s environment is discussed in the next paragraph. Both of these influences,
to the extent that they are significant, are expected to reduce the degree of risk
reduction.

Second, we assumed that the proportion of variance (on the liability scale)
explained by the score is r2

ps, but we did not specify how to estimate it. Typically,
r2
ps is computed and reported by large GWASs based on an evaluation of the

score in a test set. However, the variance that will be explained by the score
in other cohorts, using other chips, and particularly, in other populations, can
be substantially lower (Martin et al., 2019). Relatedly, the variance explained
by the score, as estimated in samples of unrelated individuals, is inflated due
to population stratification, assortative mating, and indirect parental effects
(“genetic nurture”) (Kong et al., 2018; Young et al., 2019; Morris et al., 2020;
Mostafavi et al., 2020), where the latter refers to trait-modifying environmental
effects induced by the parents based on their genotypes. These effects do not
contribute to prediction accuracy when comparing polygenic scores between
siblings (as when screening IVF embryos), and thus, the variance explained by
polygenic scores in this setting can be substantially reduced, in particular for
cognitive traits. However, recent empirical work on within-family disease risk
prediction showed that the reduction in accuracy is at most modest (Lello et al.,
2020), and within-siblings-GWAS yielded similar results to unrelated-GWAS for
most physiological traits (Howe et al., 2021).
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Third, we implicitly assumed that polygenic scores could be computed with
perfect accuracy based on the genotypes of IVF embryos. However, embryos
are genotyped based on DNA from a single or very few cells, and whole-genome
amplification results in high rates of allele dropout. Further, embryos are often
sequenced to low depth. However, we and others have shown that very accurate
genotyping of IVF embryos is feasible (Backenroth et al., 2019; Kumar et al.,
2015; Natesan et al., 2014; Treff et al., 2019b; Xiong et al., 2019; Yan et al., 2015;
Zamani Esteki et al., 2015). Either way, even if sequencing errors do occur, their
effect can be readily taken into account. Suppose that r2

0 is the proportion of
variance in liability explained by a perfectly genotyped PRS, and that r2

impute

is the squared correlation between the true score and the imputed score of an
embryo (which can be estimated experimentally). Then r2

ps = r2
0 ·r2

impute, where

r2
ps is the variance explained by the observed score, i.e., the index used in our

models.
Fourth, we did not model the process of IVF and the possible reasons for loss

of embryos. Rather, we assumed that n viable embryos are available that would
have led to live birth if implanted. The original number of fertilized oocytes
would typically be greater than n (see, e.g., the “gwern” blog for more detailed
modeling). Similarly, we did not model the age-dependence of the number of
embryos; again, we rather assume n viable embryos are available. Finally, we
assumed a single embryo transfer. In principle, transfer of, e.g., two embryos is
straightforward to simulate: we can select two embryos based on the selection
strategy (e.g., under lowest-risk prioritization, select the two embryos with the
lowest PRSs). Then, if only one of them is born, we can assume that the child
is each of the embryos with probability 0.5. We expect the RRR to somewhat
decrease under multiple embryo transfer, for both the lowest-risk prioritization
and high-risk exclusion selection strategies. However, an analytical derivation
seems difficult.

Fifth, the residual e in Eq. (2) (y = s + e) has a complex pattern of corre-
lation between siblings. As noted in Section 2, e has contributions from both
genetic and environmental factors. The genetic covariance between siblings is
straightforward to model (as in Section 6). However, the proportion of vari-
ance in liability explained by shared environment needs to be estimated and
can be large (Lakhani et al., 2019). Further, embryos from the same IVF cycle
(when only one is actually implanted) would have experienced the same early
developmental environment, and are thus expected to share even more environ-
mental factors, similarly to twins. In the current work, the correlation between
non-genetic factors across embryos does not enter our derivations. However,
care must be taken in any attempt to model the joint phenotypic outcomes of
multiple embryos.

Finally, in this work, we modeled various scenarios for the ascertainment of
the parents: either randomly, or based on their scores, or based on their disease
status. In future work, it will be interesting to model other settings of family
history, such as the presence of an affected child. Further, it is likely that parents
will attempt to screen the embryos for more than one disease (Treff et al., 2020).
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In future work, it will be important to model screening for multiple diseases and
compute the expected outcomes.

11 Code availability

The R code we used to implement all calculations in this paper and generate
the figures can be found at https://github.com/scarmi/embryo_selection.

To give two examples, below is an R function that computes the relative risk
reduction under the lowest-risk prioritization strategy for randomly ascertained
parents.

library(MASS)

risk_reduction_lowest = function(r,K,n)

{

zk = qnorm(K, lower.tail=F)

integrand_lowest = function(t)

return(dnorm(t)*pnorm((zk-t*sqrt(1-r^2/2)) / (r/sqrt(2)), lower.tail=F)^n)

risk = integrate(integrand_lowest,-Inf,Inf)$value

return((K-risk)/K)

}

The R function below computes the relative risk reduction under the high-risk
exclusion strategy (for randomly ascertained parents).

risk_reduction_exclude = function(r,K,q,n)

{

zk = qnorm(K, lower.tail=F)

zq = qnorm(q, lower.tail=F)

integrand_t = function(t,u)

return(dnorm(t)*pnorm((zk-r/sqrt(2)*(u+t))/sqrt(1-r^2),lower.tail=F))

integrand_u = function(us)

{

y = numeric(length(us))

for (i in seq_along(us))

{

u = us[i]

beta = zq*sqrt(2)-u

internal_int1 = integrate(integrand_t,-Inf,beta,u)$value

denom1 = pnorm(beta)

if (denom1==0) {denom1=1e-300} # Avoid dividing by zero

numer1 = 1-pnorm(beta,lower.tail=F)^n

internal_int2 = integrate(integrand_t,beta,Inf,u)$value

prefactor2 = pnorm(beta,lower.tail=F)^(n-1)

y[i] = dnorm(u) * (numer1/denom1*internal_int1 + prefactor2*internal_int2)

}

return(y)
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}

risk = integrate(integrand_u,-Inf,Inf)$value

return((K-risk)/K)

}
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